K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

\(R=\left(a^2+ab+\frac{1}{4}b^2\right)-3a-\frac{3}{2}b+\frac{3}{4}b^2-\frac{3}{2}b+2021\)

\(=\left(a+\frac{b}{2}\right)^2-3\left(a+\frac{b}{2}\right)^2+\frac{9}{4}+3\left(\frac{1}{4}b^2-\frac{1}{2}b+\frac{1}{4}\right)+2018\)

\(=\left(a+\frac{b}{2}-\frac{3}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2+2018\ge2018\forall a;b\)

Dấu \("="\) xảy ra \(\Leftrightarrow a=b=1\)

18 tháng 7 2018

\(R=\left(a^2+ab+\frac{1}{4}b^2\right)\)\(-3a-\) \(\frac{3}{2}b\) + \(\frac{3}{4}b^2-\frac{3}{4}b+2021\)

\(\Leftrightarrow\left(a+\frac{b}{2}\right)^2-3\left(a+\frac{b}{2}\right)^2\)\(+\frac{9}{4}+3\left(\frac{1}{4}b^2-\frac{1}{2}b+\frac{1}{4}+2018\right)\)

\(\Leftrightarrow\left(a+\frac{b}{2}-\frac{3}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2\)\(+2018\ge2018\forall a;b\)

\(Lưu\) \(ý\) \(:dấu\) \(=có\) \(thể\) \(thay\) \(thế\)  \(dấu\) \(\Leftrightarrow\)

5 tháng 5 2017

\(2M=2a^2+2b^2-6a-6b+4002\)

\(=\left[\left(a^2+2ab+b^2\right)-4\left(a+b\right)+4\right]+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+3996\)

\(=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\ge3996\)

\(\Rightarrow M\ge1998\)

Dấu = xảy ra khi \(a=b=1\)

10 tháng 7 2021

Ta có 4M = 4a2 + 4ab + 4b2 - 12a - 12b + 8052

= (4a2 + 4ab + b2) - 6(2a + b) + 9 + 3b2 - 6b + 3 + 8040

= (2a + b)2 - 6(a + b) + 9 + 3(b2 - 2b + 1) + 8040 

= (2a + b - 3)2 + 3(b - 1)2 + 8040 \(\ge\)8040

=> Min 4M = 8040

=> Min M = 2010

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2a+b-3=0\\b-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\Leftrightarrow a=b=1\)

Vạy Min M = 2010 <=> a = b = 1

21 tháng 7 2018

 chúa muốn hỏi , đề sai hay đúng ở chỗ " 3c^3+2ca+3c^2 ý :))

8 tháng 5 2018

Ta dễ dàng chứng minh:
\(0< a,b,c\le\frac{3}{2}\)
Áp dụng BDT cô si cho ba số dương ta có:
\(\left(\frac{3}{2}-a\right)+\left(\frac{3}{2}-b\right)+\left(\frac{3}{2}-c\right)\ge3\sqrt[3]{\frac{3}{2}-a)(\frac{3}{2}-b)(\frac{3}{2}-c)}\)

\(\Leftrightarrow\left(\frac{1}{2}\right)^3\ge\frac{3}{2}-a)(\frac{3}{2}-b)(\frac{3}{2}-c)\)

\(\Leftrightarrow\frac{1}{8}\ge\frac{27}{8}-\frac{9}{4}\left(a+b+c\right)+\frac{3}{2}\left(ab+bc+ac\right)-abc\)

\(\Leftrightarrow\frac{1}{8}\ge-\frac{27}{8}+\frac{3}{2}\left(ab+bc+ac\right)-abc\)

\(\Leftrightarrow4abc\ge-14+6\left(ab+bc+ac\right)\)

\(\Leftrightarrow3a^2+3b^2+3c^2+4abc\ge13\)

13 tháng 7 2017

anh nên lên học 24h để được giả đáp tốt hơn !!

8 tháng 1 2017

\(\left(a^2+\frac{b^2}{4}+\frac{9}{4}+ab-3a-\frac{3}{2}b\right)+\frac{3}{4}\left(b^2-2b+1\right)-\frac{9}{4}-\frac{3}{4}+2013\\ \)

\(\left(a+\frac{b-3}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2+2013-3\)

GTNN=2010

Khi b=1 và a= 1

29 tháng 10 2018

Hóa ra OLM vẫn còn ADMIN