Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t = x - 2012
=> P = t^2 + ( t + 4025 )^2
P = t^2 + t^2 + 8050t + 4025^2
P = 2t^2 + 8050t + 4025^2
= 2 ( t^2 + 4025t ) + 4025^2
= 2 ( t^2 + 2.t.4025/2 + 4025^2/4 ) - 4025^2/2 + 4025^2
= 2 ( t + 4025/2 )^2 + 4025^2 - 4025^2/2
Vậy GTNN là 4025^2 - 4025^2/2 khi t + 4025/2 = 0 => t = -4025/2
=> x - 2012 = -4025/2 => x = ...
Câu a :
Ta có :
\(x^2-x+3\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
Do : \(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Vậy GTNN của biểu thức trên \(=\dfrac{11}{4}\)
Dấu \(=\) xảy ra khi \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)
Câu b :
Ta có :
\(-x^2+6-8\)
\(=-x^2+6x-9+1\)
\(=-\left(x^2-6x+9\right)+1\)
\(=-\left(x-3\right)^2+1\)
Do :
\(\left(x-3\right)^2\ge0\Rightarrow-\left(x-3\right)^2\le0\Rightarrow-\left(x-3\right)^2+1\le1\)
Vâỵ GTNN của biểu thức \(=11\)
Dấu \(=\) xảy ra khi \(\left(x-3\right)^2=0\Rightarrow x=3\)
dùng bđt bunhiacopski thôi
hoặc pt \(\left(x+2y\right)^2=\left(x\cdot1+\sqrt{2}y\cdot\sqrt{2}\right)^2\)
(2x2+x-2013)2+4 (x2-5x-2012)2= 4 (2x2+x-2013)(x2-5x-2012)
Dat \(\hept{\begin{cases}a=2x^2+x-2013\\b=x^2-5x-2012\end{cases}}\)ta co phuong trinh
(2x2+x-2013)2+4 (x2-5x-2012)2= 4 (2x2+x-2013)(x2-5x-2012)
<=>\(a^2+4b^2=4ab\)
<=>\(a^2+4b^2-4ab=0\)
<=>\(\left(a-2b\right)^2=0\)
<=>\(a=2b\)
=>\(2x^2+x-2013=2x^2-10x-4024\)
<=>\(11x=2011\)
<=>x=\(\frac{2011}{11}\)
\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right).\)
\(\Rightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+4\left(x^2-5x-2012\right)^2=0\)
\(\Leftrightarrow\left[\left(2x^2+x-2013\right)-2\left(x^2-5x-2012\right)\right]^2=0\)(Hằng đẳng thức)
\(\Leftrightarrow2x^2+x-2013-2x^2+10x+4024=0\)
\(\Leftrightarrow11x=-2011\)
\(\Leftrightarrow x=\frac{-2011}{11}\)
\(\Leftrightarrow\left(2x^2+x-2013\right)^2+\left[2\left(x^2-5x-2012\right)\right]^2-2.\left(2x^2+x-2013\right).2\left(x^2-5x-2012\right)=0\)
\(\Leftrightarrow\left(2x^2+x-2013-2x^2+10x+4024\right)^2=0\)
\(\Leftrightarrow\left(11x+2011\right)^2=0\)
\(\Leftrightarrow x+2011=0\)
\(\Leftrightarrow11x=-2011\)
\(\Leftrightarrow x=\dfrac{2011}{11}.\)
Nếu làm sai chỗ nào thì sửa hộ
Đặt P = x - 2012
=> P = t^2 + ( t + 4025 )^2
P = t^2 + t^2 + 8050t + 4025^2
P = 2t^2 + 8050t + 4025^2
= 2 ( t^2 + 4025t ) + 4025^2
= 2 ( t^2 + 2.t.4025/2 + 4025^2/4 ) - 4025^2/2 + 4025^2
= 2 ( t + 4025/2 )^2 + 4025^2 - 4025^2/2
Vậy GTNN là 4025^2 - 4025^2/2 khi t + 4025/2 = 0 => t = -4025/2
=> x - 2012 = -4025/2 => x = ...