K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

Đề sai một chút nha bạn : mình sửa bạn thử tham khảo xem đúng không \(P=\frac{12x^2-6x+4}{\left(x-1\right)^2}\)

Mình làm luôn nha 

Giải

Theo bài ra , ta có : 

\(P=\frac{12x^2-6x+4}{\left(x-1\right)^2}=\frac{12\left(x^2-2x+1\right)+18x-8+10x-10+10}{\left(x-1\right)^2}=\frac{12\left(x-1\right)^2+18\left(x-1\right)+10}{\left(x-1\right)^2}=12+\frac{18}{x-1}+\frac{10}{\left(x-1\right)^2}\)

Đặt \(\frac{2}{x-1}=y\)

Đến đây bạn tự làm tiếp nhé 

19 tháng 12 2016

Đề đúng rồi đó bạn #Phát

26 tháng 12 2016

(12x^2-6x+4)/(x^2+1)= (3x^2+3+9x^2-6x+1)/(x^2+1)= 3(x^2+1)+(3x-1)^2/(x^2+1)=3+(3x-1)^2

Vì (3x-1)^2 >= 0 => để đạt GTNN thì (3x-1)^2=0. Vậy GTNN là 3 tại x=1/3 ( tự tìm nghiệm x)

23 tháng 12 2016

P=(12x^2-6x+4)/(x^2+1)

=(9x^2-6x+1+3x^2+3)/(x^2+1)

=(9x^2-6x+1)/(x^2+1)+(3x^2+3)/(x^2+1)

=(3x-1)^2/(x^2+1)+3(x^2+1)/(x^2+1)

=(3x-1)^2/(x^2+1)+3 >= 3 với mọi x  (do (3x-1)^2/(x^2+1) dương với mọi x)

Vậy minP=3,dấu "=" xảy ra <=> x=1/3

18 tháng 4 2019

\(A=x^4+6x^3+13x^2+12x+12\)

     \(=\left(x^4+6x^3+19x^2+30x+25\right)-6x^2-18x-30+17\)

      \(=\left(x^4+6x^3+19x^2+30x+25\right)-6\left(x^2+3x+5\right)+17\)

       \(=\left(x^2+3x+5\right)^2-6\left(x^2+3x+5\right)+17\)

Đặt \(t=x^2+3x+5\)

Khi đó \(A=t^2-6t+17=t^2-2.t.3+9+8=\left(t-3\right)^2+8\ge8\)

Dấu "=" xảy ra <=> t - 3 = 0 <=> t = 3

                                          <=> \(x^2+3x+5=3\Leftrightarrow x^2+3x+2=0\)

                                           \(\Leftrightarrow x^2+x+2x+2=0\)

                                            \(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\)

                                             \(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

Vậy AMin = 8 khi và chỉ khi x = -1 hoặc x = -2

18 tháng 4 2019

CÁC BẠN GIẢI NHANH HỘ NHÚN VỚI

26 tháng 12 2016

À Sai rồi Bạn Đúng nà =))
P=\(\frac{\left(3x^2+3\right)+\left(9x^2-6x+1\right)}{X^2+1}\)
P=\(\frac{3\left(X^2+1\right)}{X^2+1}+\frac{\left(3x-1\right)^2}{X^2+1}\)
P=\(3+\frac{\left(3x-1\right)^2}{X^2+1}\)
P\(\ge3\)

21 tháng 12 2016

3

 

11 tháng 5 2019

Đề thiếu , phải cho x,y >0

\(P=3y+\frac{4}{y+1}+6x-5+\frac{5}{x-2}\)

\(\Leftrightarrow P=3y+3+\frac{4}{y+1}+6x-12+\frac{5}{x-2}+4\)

Áp dụng bdt cosi

\(3\left(y+1\right)+\frac{4}{y+1}\ge2\sqrt{3\left(y+1\right).\frac{4}{y+1}}=2\sqrt{12}\)

T Tự \(6x-12+\frac{5}{x-2}=6\left(x-2\right)+\frac{5}{x-2}\ge2\sqrt{30}\)

\(\Leftrightarrow P\ge2\sqrt{12}+2\sqrt{20}+4=2\left(\sqrt{12}+\sqrt{20}+2\right)\)

Vậy MIn P = ... <=> x = \(\orbr{\begin{cases}\sqrt{\frac{5}{6}}+2\\-\sqrt{\frac{5}{6}}+2\end{cases}}\)và y = \(\orbr{\begin{cases}\sqrt{\frac{4}{3}}-1\\-\sqrt{\frac{4}{3}}-1\end{cases}}\)

2 tháng 2 2017

(109-x)/91+(107-x)/93+(105-x)/95+(103-x)/97=-4

[(109-x)/91 +1]+[(107-x)/93 +1]+[(105-x)/95 +1]+[(103-x)/97 +1]-4=-4

(109+91-x)/91+(107+93-x)/93+(105+95-x)/95+(103+97-x)/97=-4+4

(200-x)/91+(200-x)/93+(200-x)/95+(200-x)/97=0

(200-x)(1/91+1/93+1/95+1/97)=0

Ma : 1/91+1/93+1/95+1/97\(\ne\)0

=>200-x=0

=>x=200