Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= |x-2016| + |x-2017|
=> A= |x-2016| + |2017-x|
Ta có: |x-2016| ≥ x-2016 x. Dấu bằng xảy ra khi x-2016 ≥ 0
|2017-x| ≥ 2017-x x. Dấu bằng xảy ra khi 2017-x ≥ 0
=> |x-2016| + |2017-x| ≥ x-2016+2017-x x
=> A ≥ 1 x
Dấu "=" xảy ra khi x-2016 ≥ 0 và 2017-x ≥ 0
=>x ≥ 2016 và -x ≥ -2017
=> x ≥ 2016 và x ≤ 2017
=> 2016 ≤ x ≤ 2017
Vậy giá trị nhỏ nhất của A là 1 tại 2016 ≤ x ≤ 2017.
Tìm giá trị nhỏ nhất của:P=/x-2016/+/x-2017/.
Áp dụng BĐT /a+b/. ≤/a/+/b/. ⇒ P=/x-2016/+/x-2017/= /x-2016/+/2017-x/ lớn hơn hoặc bằng /x-2016+2017-x/=1.
Vậy GTNN của P là 1 <=> 0. ≤(x-2016)(2017-x) <=> 2016. ≤x. ≤2017.
Ta có: \( \left|x-2015\right|=\left|2015-x\right|\)
Ta lại có: \(\left|2015-x\right|+\left|x-2017\right|\ge\left|2015-x+x-2017\right|=2\)
\(\Rightarrow P\ge\left|2016-x\right|+2\)
Vì \(\left|2016-x\right|\ge0\)\(\Rightarrow\left|2016-x\right|+2\ge2\)
\(\Rightarrow P\ge2\)
Khi đó: \(\left|2016-x\right|=0\)\(\Rightarrow2016-x=0\)\(\Rightarrow x=2016\)
Vậy \(P_{min}=2\)\(\Leftrightarrow\)\(x=2016\)
Vì \(\left|x-7\right|\ge0;\left|x-2016\right|\ge0;\left|x-2017\right|\ge0\)
Suy ra:\(\left|x-7\right|+\left|x+2016\right|+\left|x-2017\right|\ge0\)
Dấu = xảy ra khi x-7=0;x=7
x+2016=0;x=-2016
x-2017=0;x=2017
Vậy Min A=0 khi x=7;-2016;2017
A = |x-7|+|x-2016|+|x-2017|
= |x-7|+|x-2016|+|2017-x|
≥ |x-7+2017-x|+|x-2016| = 2017+|x-2016|≥2017
để A nhỏ nhất => A = 2017
=> |x - 2016| = 0 => x = 2016
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn đừng làm như vậy !!!