K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DN
0
ND
0
A
1
VH
2
17 tháng 10 2021
\(M=2021+\left(x-2022\right)^{2022}\ge2021\forall x\)
Dấu '=' xảy ra khi x=2022
AH
Akai Haruma
Giáo viên
29 tháng 12 2023
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-2020|+|x-2024|=|x-2020|+|2024-x|\geq |x-2020+2024-x|=4$
$|x-2022|\geq 0$ (theo tính chất trị tuyệt đối)
$\Rightarrow |x-2020|+|x-2024|+|x-2022|\geq 4+0=4$
$\Rightarrow P\geq 4$
Vậy $P_{\min}=4$. Giá trị này đạt được khi $(x-2020)(2024-x)\geq 0$ và $x-2022=0$
Hay $x=2022$
4 tháng 4 2022
1: \(M=0\)
mà \(\left\{{}\begin{matrix}\left(x-2021\right)^{2022}>=0\\\left(2021-y\right)^{2020}>=0\end{matrix}\right.\)
nên x-2021=0 và 2021-y=0
=>x=2021 và y=2021