K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2022

\(H=\dfrac{6-8x}{x^2+1}\)

<=> Hx2 + H = 6 - 8x 

<=> Hx2 + 8x + H - 6 = 0 (1) 

Phương trình (1) có nghiệm khi 

\(\Delta=8^2-4H\left(H-6\right)\ge0\)

<=> \(H^2-6H-16\le0\)

<=> \(\left(H-8\right)\left(H+2\right)\le0\)

\(\Leftrightarrow-2\le H\le8\) 

=> Min H = -2 

Dấu "=" xảy ra khi x = 2 

 

20 tháng 4 2017

ĐKXĐ: \(x\ne1\)

Ta có: \(I=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{2x^2-4x+2+x^2-4x+4}{x^2-2x+1}\) \(=\dfrac{2\left(x^2-2x+1\right)}{x^2-2x+1}+\dfrac{x^2-4x+4}{x^2-2x+1}\) \(=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\)

\(\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\) với mọi \(x\ne1\)

=> \(2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\) với mọi \(x\ne1\)

dấu "=" xảy ra khi x =2 ( thỏa mãn ĐKXĐ)

Vậy GTNN của I = 2 khi x=2

21 tháng 5 2017

thi xong còn học chăm chỉ thế

22 tháng 5 2017

1)???

2) \(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=2+\dfrac{x^2-4x+4}{x^2-2x+1}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)

Vậy GTNN của A là 2 tại x=2.

3) \(\)Đặt \(a=\dfrac{1}{x+100}\Rightarrow x=\dfrac{1}{a}-100\)

\(D=\dfrac{x}{\left(x+100\right)^2}=a^2x=a^2\left(\dfrac{1}{a}-100\right)=a-100a^2=-100\left(a^2-\dfrac{a}{100}+\dfrac{1}{40000}-\dfrac{1}{40000}\right)=-100\left(a-\dfrac{1}{200}\right)^2+\dfrac{1}{400}\le\dfrac{1}{400}\)

Vậy GTLN của D là \(\dfrac{1}{400}\) tại \(a=\dfrac{1}{200}\Leftrightarrow x=100\)

5 tháng 6 2016

Viết A dưới dạng biểu thức không âm :

A=\(\frac{\left(2x^2-4x+2\right)+\left(x^2-4x+4\right)}{x^2-2x+1}=2+\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\) 

Vậy GTNN của A=2 khi và chỉ khi x=2

5 tháng 6 2016

Đặt x-1=y thì x=y+1.ta có :

A=\(\frac{3\left(y+1\right)^2-8\left(y+1\right)+6}{y^2}=\frac{3y^2-2y+1}{y^2}=3-\frac{2}{y}+\frac{1}{y^2}\) 

Lại đặt \(\frac{1}{y}=z\) thì 

A=3-2z+z2=(z-1)2+2\(\ge\) 2

Vậy GTNN của A=2 \(\Leftrightarrow\) z=1\(\Leftrightarrow\) y=1\(\frac{1}{x-1}=1\Leftrightarrow x=2\)

15 tháng 12 2017

Ta có \(\frac{3x^2+8x+6}{x^2+2x+1}=\frac{3x^2+6x+3+2x+2+1}{\left(x+1\right)^2}=\frac{3\left(x+1\right)^2+2\left(x+1\right)+1}{\left(x+1\right)^2}\)

\(=3+\frac{2}{x+1}+\frac{1}{\left(x+1\right)^2}\)

Đặt \(\frac{1}{x+1}=t\), biểu thức trở thành: \(t^2+2t+3=\left(t+1\right)^2+2\ge2\)

Vậy GTNN của phân thức là 2, khi t = -1 tức là x = -2.

10 tháng 5 2017

Hỏi đáp Toán

Hỏi đáp Toán

Hỏi đáp Toán

17 tháng 3 2018

\(A=\dfrac{3x^2-6x+17}{x^2-2x+5}\)

= \(\dfrac{3x^2-6x+15+2}{x^2-2x+5}\)

=\(\dfrac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}\)

= \(\dfrac{3\cdot\left(x^2-2x+5\right)}{x^2-2x+5}+\dfrac{2}{x^2-2x+5}\)

= \(3+\dfrac{2}{x^2-2x+5}\)

= \(3+\dfrac{2}{x^2-2x+1+4}\)

= \(3+\dfrac{2}{\left(x-1\right)^2+4}\)

vì (x-1)2 ≥ 0 ∀ x

⇔ (x-1)2 +4 ≥ 4

\(\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{1}{2}\)

\(3+\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{7}{2}\)

⇔ A \(\le\dfrac{7}{2}\)

⇔ Min A =\(\dfrac{7}{2}\)

khi x-1=0

⇔ x=1

vậy ....

17 tháng 3 2018

Ta có:\(B=\dfrac{2x^2-16x+41}{x^2-8x+22}\)

\(B=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)

\(B=2-\dfrac{3}{x^2-8x+16+6}\)

\(B=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{5}{2}\)

\(\Rightarrow MINB=\dfrac{5}{2}\Leftrightarrow x=4\)

9 tháng 4 2018

gợi ý nha:

https://olm.vn/hoi-dap/question/1035789.html

k mik đi

@_@

Lik đó bạn:olm.vn/hoi-dap/question/1035789.html