\(f\left(x\right)=\sqrt{x^2-2x+2}+\sqrt{x^2+2x+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2015

\(=\sqrt{x^2-2x+1+1}+\sqrt{x^2+2x+1+1 }=\sqrt{\left(x-1\right)^2+1}+\sqrt{\left(x+1\right)^2+1}\)

3 tháng 4 2015

Vì (x - 1)2 >= 0 và (x + 1)2 >= 0 nên Căn [(x - 1)2+1] + Căn [(x + 1)2+1] >= Căn [0 + 1] + Căn [0 + 1]

                                                  <=> Căn [(x - 1)2+1] + Căn [(x + 1)2+1] >= 2

 

19 tháng 10 2020

a) Để hàm xác định thì \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

b) Ta có: \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(\Rightarrow f\left(4-2\sqrt{3}\right)=\frac{\sqrt{4-2\sqrt{3}}+1}{\sqrt{4-2\sqrt{3}}-1}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-1}=\frac{\sqrt{3}}{\sqrt{3}-2}\)

và \(f\left(a^2\right)=\frac{\sqrt{a^2}+1}{\sqrt{a^2}-1}=\frac{\left|a\right|+1}{\left|a\right|-1}\)(với \(a\ne\pm1\))

* Nếu \(a\ge0;a\ne1\)thì \(f\left(a^2\right)=\frac{a+1}{a-1}\)

* Nếu \(a< 0;a\ne-1\)thì \(f\left(a^2\right)=\frac{a-1}{a+1}\)

c) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)

Để f(x) nguyên thì \(\frac{2}{\sqrt{x}-1}\)nguyên hay \(2⋮\sqrt{x}-1\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà \(\sqrt{x}-1\ge-1\)nên ta xét ba trường hợp:

+) \(\sqrt{x}-1=-1\Rightarrow x=0\left(tmđk\right)\)

+) \(\sqrt{x}-1=1\Rightarrow x=4\left(tmđk\right)\)

+) \(\sqrt{x}-1=2\Rightarrow x=9\left(tmđk\right)\)

Vậy \(x\in\left\{0;4;9\right\}\)thì f(x) có giá trị nguyên 

d) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)\(f\left(2x\right)=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\)

f(x) = f(2x) khi \(\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{2x}+1\right)\)\(\Leftrightarrow\sqrt{2}x+\sqrt{2x}-\sqrt{x}-1=\sqrt{2}x-\sqrt{2x}+\sqrt{x}-1\)\(\Leftrightarrow\sqrt{2x}-\sqrt{x}=-\sqrt{2x}+\sqrt{x}\Leftrightarrow2\sqrt{2x}=2\sqrt{x}\Leftrightarrow\sqrt{2x}=\sqrt{x}\Leftrightarrow x=0\)(tmđk)

Vậy x = 0 thì f(x) = f(2x)

a: ĐKXĐ: (x+4)(x-1)<>0

hay \(x\notin\left\{-4;1\right\}\)

b: \(y-3=\dfrac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5-3x^2-9x+12}{x^2+3x-4}\)

\(=\dfrac{-x^2-9x+17+6\sqrt{\left(x^2+1\right)\left(x-2\right)}}{x^2+3x-4}< =0\)

=>y<=3

31 tháng 5 2017

\(\sqrt{\left(2x+1\right)\left(x+2\right)}\)

31 tháng 5 2017

là sao hả bạn

26 tháng 12 2019

Tập xác định D của hàm số là \(\left[-2;5\right]\)

Ta có: \(f'\left(x\right)=\frac{-2x+4}{2\sqrt{-x^2+4x+21}}-\frac{-2x+3}{2\sqrt{-x^2+3x+10}}\)với \(x\in\left(-2;5\right)\)

\(f'\left(x\right)=0\Leftrightarrow\left(-2x+4\right)\sqrt{-x^2+3x+10}=\)\(\left(-2x+3\right)\sqrt{-x^2+4x+21}\)

Suy ra \(\left(-2x+4\right)^2\left(-x^2+3x+10\right)=\)\(\left(-2x+3\right)^2\left(-x^2+4x+21\right)\)(1)

Khai triển ta được: \(51x^2-104x+29=0\)

\(\Delta=104^2-4.51.29=4900,\sqrt{\Delta}=70\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{104+70}{102}=\frac{29}{17}\\x=\frac{104-70}{102}=\frac{1}{3}\end{cases}}\)

Thử lại chỉ có \(\frac{1}{3}\)là nghiệm của (1)

Lập bảng biến thiên của hàm số f(x) suy ra \(f\left(x\right)_{min}=f\left(\frac{1}{3}\right)=\frac{\sqrt{200}-\sqrt{98}}{3}\)

27 tháng 12 2019

@ Cool@ Không sai. Làm thế cũng đc nhưng mà lớp 9 đã học đạo hàm đâu?

Phải cuối năm lớp 11 mới học  mà em,

27 tháng 10 2019

a) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x-1\right|+\left|x-3\right|\ge\left|\left(x-1\right)+\left(3-x\right)\right|=2\)

Vậy\(A_{min}=2\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)

\(TH1:\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow1\le x\le3\)

\(TH1:\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\left(L\right)\)

Vậy \(A_{min}=2\Leftrightarrow1\le x\le3\)

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)Vì \(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))Ta có: Nếu \(\(x&gt;1\Leftrightarrow f\left(x\right)&gt;f\left(1\right)=3\)\)nên pt vô nghiệm Nếu \(\(-3\le x&lt; 1\Leftrightarrow f\left(x\right)&lt; f\left(1\right)=3\)\)nên pt vô nghuêmjVậy x = 1B2, GHPT:...
Đọc tiếp

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)

GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)

\(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))

Ta có: Nếu \(\(x&gt;1\Leftrightarrow f\left(x\right)&gt;f\left(1\right)=3\)\)nên pt vô nghiệm

Nếu \(\(-3\le x&lt; 1\Leftrightarrow f\left(x\right)&lt; f\left(1\right)=3\)\)nên pt vô nghuêmj

Vậy x = 1

B2, GHPT: \(\(\hept{\begin{cases}2x^2+3=\left(4x^2-2yx^2\right)\sqrt{3-2y}+\frac{4x^2+1}{x}\\\sqrt{2-\sqrt{3-2y}}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\end{cases}}\)\)

ĐK \(\(\hept{\begin{cases}-\frac{1}{2}\le y\le\frac{3}{2}\\x\ne0\\x\ne-\frac{1}{2}\end{cases}}\)\)

Xét pt (1) \(\(\Leftrightarrow2x^2+3-4x-\frac{1}{x}=x^2\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow-\frac{1}{x^3}+\frac{3}{x^2}-\frac{4}{x}+2=\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow\left(-\frac{1}{x}+1\right)^3+\left(-\frac{1}{x}+1\right)=\left(\sqrt{3-2y}\right)^3+\sqrt{3-2y}\)\)

Xét hàm số \(\(f\left(t\right)=t^3+t\)\)trên R có \(\(f'\left(t\right)=3t^2+1&gt;0\forall t\in R\)\)

Suy ra f(t) đồng biến trên R . Nên \(\(f\left(-\frac{1}{x}+1\right)=f\left(\sqrt{3-2y}\right)\Leftrightarrow-\frac{1}{x}+1=\sqrt{3-2y}\)\)

Thay vào (2) \(\(\sqrt{2-\left(1-\frac{1}{x}\right)}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\sqrt{\frac{1}{x}+1}=\frac{\sqrt[3]{x^2\left(x+2\right)}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\left(2x+1\right)\sqrt{\frac{1}{x}+1}=x+2+\sqrt[3]{x^2\left(x+2\right)}\)\)

\(\(\Leftrightarrow\left(2+\frac{1}{x}\right)\sqrt{1+\frac{1}{x}}=1+\frac{2}{x}+\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow f\left(\sqrt{1+\frac{1}{x}}\right)=f\left(\sqrt[3]{1+\frac{2}{x}}\right)\)\)

\(\(\Leftrightarrow\sqrt{1+\frac{1}{x}}=\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow\left(1+\frac{1}{x}\right)^3=\left(1+\frac{2}{x}\right)^2\)\)

Đặt \(\(\frac{1}{x}=a\)\)

\(\(\Rightarrow Pt:\left(a+1\right)^3=\left(2a+1\right)^2\)\)

Tự làm nốt , mai ra lớp t giảng lại cho ...

3
13 tháng 1 2019

Vãi ạ :))

13 tháng 1 2019

ttpq_Trần Thanh Phương vãi j ?