Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải câu b trc nha
= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009
vậy min=2009 khi x=1
https://olm.vn//hoi-dap/question/57101.html
Tham khảo đây nhá bạn
A = x2 + 5x + 7
= ( x2 + 5x + 25/4 ) + 3/4
= ( x + 5/2 )2 + 3/4
\(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2
=> MinA = 3/4 <=> x = -5/2
B = 6x - x2 - 5
= -( x2 - 6x + 9 ) + 4
= -( x - 3 )2 + 4
\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2+4\le4\)
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
=> MaxB = 4 <=> x = 3
C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]
= [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
= ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Đẳng thức xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x = -5
=> MinC = -36 <=> x = 0 hoặc x = -5
\(1.x^2-4x+4=8\left(x-2\right)^5\)
\(\Leftrightarrow\left(x-2\right)^2-8\left(x-2\right)^5=0\)
\(\Leftrightarrow\left(x-2\right)^2\left[1-8\left(x-2\right)^3\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2=0\\1-8\left(x-2\right)^3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\\left(x-2\right)^3=\frac{1}{8}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{2}\end{cases}}}\)
\(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)
\(=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)
\(=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)(Vì a+b=1)
\(=4a^2-4ab+3b^2-6a^2-6b^2\)
\(=-2a^2-4ab-2b^2\)
\(=-2\left(a+b\right)^2=-2\)
x2+5x+8
=x2+2.x.5/2+25/4+7/4
=(x+5/2)2+7/4 \(\ge\)7/4 ( vì (x+5/2)2\(\ge\)0 )
Dấu "=" xảy ra khi:
x+5/2=0
<=>x=-5/2
Vậy GTNN của x2+5x+8 là 7/4 tại x=-5/2
x(x-6)=x2-6x
=x2-6x+9-9
=(x-3)2-9\(\ge\)-9( vì (x-3)2\(\ge\)0 )
Dấu "=" xảy ra khi:
x-3=0
<=>x=3
Vậy GTNN của x(x-6) là -9 tại x=3
1. a . 3x2 - 6x = 0
\(\Leftrightarrow3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b. x3 - 13x = 0
\(\Leftrightarrow x\left(x^2-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)
c. 5x ( x - 2001 ) - x + 2001 = 0
<=> 5x ( x - 2001 ) - ( x - 2001 ) = 0
\(\Leftrightarrow\left(5x-1\right)\left(x-2001\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2001=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2001\end{cases}}\)
\(a,A=\left(x^2+5x+\dfrac{25}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\\ A_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\\ b,B=x^2-6x+9-9=\left(x-3\right)^2-9\ge9\\ B_{min}=-9\Leftrightarrow x=3\)