K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

a,\(x^2+4x+7=x^2+4x+4+3=\left(x+2\right)^2+3\ge3\)

Dấu = xảy ra \(< =>x+2=0< =>x=-2\)

Vậy \(A_{min}=3\)khi \(x=-2\)

b,\(4x^2+4x+6=\left(2x\right)^2+4x+1+5=\left(2x+1\right)^2+5\ge5\)

Dấu = xảy ra \(< =>2x+1=0< =>x=-\frac{1}{2}\)

Vậy \(B_{min}=5\)khi \(x=-\frac{1}{2}\)

c,\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu = xảy ra \(< =>x+\frac{1}{2}=0< =>x=-\frac{1}{2}\)

Vậy \(C_{min}=\frac{3}{4}\)khi \(x=-\frac{1}{2}\)

d,\(2x^2-6x=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Dấu = xảy ra \(< =>x-\frac{3}{2}=0< =>x=\frac{3}{2}\)

Vậy \(D_{min}=-\frac{9}{2}\)khi \(x=\frac{3}{2}\)

 
 
 
24 tháng 8 2020

A=x2+4x+4+3=(x+2)2+3

5 tháng 7 2017

a, \(x^2-2x+3=x^2-x-x+1+2=\left(x-1\right)^2+2\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\)

với mọi giá trị của \(x\in R\).

Để \(\left(x-1\right)^2+2=2\) thì

\(\left(x-1\right)^2=0\Rightarrow x=1\)

Câu c tương tự.

b, \(4x^2+12x-5=4x^2+6x+6x+9-14=\left(2x+3\right)^2-14\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(2x+3\right)^2\ge0\Rightarrow\left(2x+3\right)^2-14\ge-14\)

với mọi giá trị của \(x\in R\).

Để \(\left(2x+3\right)^2-14=-14\) thì

\(\left(2x+3\right)^2=0\Rightarrow2x+3=0\Rightarrow x=-\dfrac{3}{2}\)

Vậy.......................

Câu d tương tự.

Chúc bạn học tốt!!!

29 tháng 10 2017

a) B = \(x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x=1\)

Ap dung dinh li Be du, ta có A chia hết cho B khi số dư = 0.

A = \(f\left(1\right)=1^4-3.1^3+6.1^2-7m+m=0\)

\(\Leftrightarrow m=\dfrac{2}{3}\)

Các câu còn lại đơn giản, áp dụng như câu a là được.

29 tháng 10 2017

a ) Theo lược đồ hooc - ne

1 1 -3 6 -7+m 1 -2 4 -3+m

Để \(A\) chia hết cho B thì :

\(-3+m=0\Rightarrow m=3\)

Vậy \(m=3\)

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

11 tháng 8 2017

các bạn ơi giúp mình vớikhocroi

15 tháng 8 2018

1 a)A\(=x^2-2xy+y^2+3x-3y-4\)

\(=\left(x^2-2xy+y^2\right)+\left(3x-3y\right)-4\)

\(=\left(x-y\right)^2-1+3\left(x-y\right)-3\)

\(=\left(x-y+1\right)\left(x-y-1\right)+3\left(x-y-1\right)\)

\(=\left(x-y-1\right)\left(x-y+1+3\right)\)

\(=\left(x-y-1\right)\left(x-y+4\right)\)

5 tháng 7 2017

a) đặt \(A=x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=' xảy ra khi \(x=-\dfrac{1}{2}\)

Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=-\dfrac{1}{2}\)

b) đặt \(B=2+x-x^2\)

\(=-x^2+x+2\)

\(=-\left(x^2-x-2\right)\)

\(=-\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)

Vậy \(MAX_B=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)

c) đặt \(C=x^2-4x+1\)

\(=x^2-2\cdot x\cdot2+2^2-4+1\)

\(=\left(x-2\right)^2-3\ge-3\)

Dấu "=" xảy ra khi \(x=2\)

Vậy \(MIN_c=-3\) khi \(x=2\)

d) đặt \(D=4x^2+4x+11\)

\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2-1+11\)

\(=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)

Vậy \(MIN_D=10\) khi \(x=-\dfrac{1}{2}\)

mấy câu còn lại tương tự

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn