K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

a) \(A=\left|x-1\right|+\left|x-2\right|+2016\)

\(=\left|x-1\right|+\left|2-x\right|+2016\)

Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

=> \(\left|x-1\right|+\left|2-x\right|+2016\ge1+2016=2017\)

Vậy GTNN của A là 2017 khi \(\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le2\end{cases}\)\(\Leftrightarrow1\le x\le2\)

b) \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

Có: \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\) (1)

Ta lại có: \(\left|x-2\right|\ge0\) (2)

Từ (1)(2) suy ra: \(B\ge2\)

Vậy GTNN của B là 1 khi \(\begin{cases}x-1\ge0\\3-x\ge0\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le3\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}1\le x\le3\\x=2\end{cases}\)\(\Leftrightarrow x=2\)

24 tháng 2 2017

a) Ta có:

\(\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|\ge\left|x-1+2-x\right|\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|+2016\ge\left|x-1+2-x\right|+2016\)

hay \(A\ge\left|1\right|+2016=1+2016=2017\)

=> \(A\ge2017\)

Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy với \(x\in\left\{1;2\right\}\) thì A đạt GTNN và A=2017.

24 tháng 2 2017

b) Ta có:

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)

hay \(B=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+x-2+3-x\right|\)

\(\Rightarrow B\ge\left|x\right|\)

Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\) (1)

Để B nhỏ nhất

=> |x| phải nhỏ nhất (2)

Từ (1) và (2)

=> x=1

khi đó:

B=|x|=|1|=1

Vậy với x=1 thì B đạt GTNN và B=1.

3 tháng 6 2019

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath

eM THAM khảo nhé!

21 tháng 9 2016

bai 1 :Ta co |x-3,5| >hoac=0

              va |y-1,3| >hoac=0 nen |x-3,5|+|y-1,3|=0 <=> x-3,5=0 va y-1,3=0

                                                                        =>x=-3,5 va y=-1,3

bai 2:   ta co

A=|x-500| +|x-300| =|x-500|+|300-x|

=>A > hoac =|x-500+300-x|=|-200|=200

dau = xay ra<=>(x-500).(300-x)=0 =>300< hoac=x< hoac =500


 

                 

21 tháng 9 2016

Bài 1 :

Ta có : \(\left|x-3,5\right|\ge0\) với mọi x

            \(\left|y-1,3\right|\ge0\) với mọi x

 \(\Rightarrow\left|x-3,5\right|+\left|y-1,3\right|\ge0\) với mọi x

Mà \(\left|x-3,5\right|+\left|y-1,3\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|x-3,5\right|=0\\\left|y-1,3\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x-3,5=0\\y-1,3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3,5\\y=1,3\end{cases}}\)

Bài 2 :

Ta có : \(\left|x-500\right|\ge0\) với mọi x

            \(\left|x-300\right|\ge0\) với mọi x

\(\Rightarrow\left|x-500\right|+\left|x-300\right|\ge0\) với mọi x

Câu này mk ko bít, làm tới đây đc thôi à

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

1 tháng 12 2019

A= \(|\sqrt{x^2}+\sqrt{1}-9|+|\sqrt{x^2}+\sqrt{1}-12|\)

A=\(|x+1-9|+|x+1-12|\)

A=\(|x-8|+|x-11|\)

TH1: x<0

=> A= (-x)-8 + (-x) -11

A=(-x-x)-(8+11)

A=-2x-19

TH2:x>0

=> A=x-8+x-11

A=(x+x)-(8+11)

A=2x-19

Tương tự x=0 sau đấy cậu KL nhé, phần sau mình lười

 
 
 
 
1 tháng 12 2019

Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\):

\(\left|\sqrt{x^2+1}-9\right|+\left|\sqrt{x^2+1}-12\right|\)\(=\left|\sqrt{x^2+1}-9\right|+\left|12-\sqrt{x^2+1}\right|\)

\(\ge\left|\left(\sqrt{x^2+1}-9\right)+\left(12-\sqrt{x^2+1}\right)\right|=3\)

Vậy \(A_{min}=3\Leftrightarrow\left(\sqrt{x^2+1}-9\right)\left(12-\sqrt{x^2+1}\right)\ge0\)

\(TH1:\hept{\begin{cases}\sqrt{x^2+1}-9\ge0\\12-\sqrt{x^2+1}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+1\ge81\\x^2+1\le144\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2\ge80\\x^2\le143\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{80}\le x\le\sqrt{143}\\-\sqrt{80}\ge x\ge-\sqrt{143}\end{cases}}\)

\(TH2:\hept{\begin{cases}\sqrt{x^2+1}-9\le0\\12-\sqrt{x^2+1}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+1\le81\\x^2+1\ge144\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2\le80\\x^2\ge143\end{cases}}\left(L\right)\)

15 tháng 5 2016

a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)

=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)

Dấu "=" xảy ra khi x=-2;y=1/5

Vậy GTNN của C là -10 tại x=-2;y=1/5

15 tháng 5 2016

b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)

Dấu "=" xảy ra khi: x=3/2

Vậy GTLN của D là : 4/5 tại x=3/2