Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1\)
Vậy GTNN của A là 1 khi x = 1
b) \(B=x^2-4x+y^2-8y+6\)
\(B=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)
\(B=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Vậy GTNN của B là -14 khi x = 2; y = 4
a, A = x2 - 2x + 2
=(x2 -2x + 1) +1
=(x-1)2 + 1 >= 1
Dấu bằng xảy ra <=> (x-1)2 = 0
<=> x - 1 = 0
<=> x = 1
Vậy...
b, B = x2 - 4x + y2- 8y + 6
B =(x2 - 4x + 4) + (y2- 8y + 16) - 14
B =(x - 2)2 + (y - 4)2 -14 >= -14
Dấu bằng xảy ra + <=> x - 2 = 0
<=> x = 2
+ <=> y - 4 = 0
<=> y = 4
Vậy ...
Bài này dài vc sao làm hết dc.
H = x(3-x)
= 3x- x^2
= - ( x^2 - 3x )
= - ( x^2 - 2x.3/2 + 9/4 - 9/4 )
= - ( x - 3/2 )^2 + 9/4
Vậy GTLN là 9/4 tại x = 3/2
\(A=x^2+3x+7\)
\(A=x^2+2x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+7\)
\(A=\left(x+\frac{3}{2}\right)^2-\frac{9}{4}+7\)
\(A=\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\)
Nhận xét: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=0\Rightarrow x=\frac{-3}{2}\)
Vậy \(minA=\frac{19}{4}\Leftrightarrow x=\frac{-3}{2}\)
Các câu khác lm tương tự nhé, lần sau đừng đưa nhiều câu cùng một lúc lên thế này, đưa từng câu một thôi thì bn sẽ có câu tl nhanh hơn đấy
b)Ta có:\(B=\left(0,5x^2+x\right)^2-3\left|0,5x^2+x\right|\)
\(B=\left|0,5x^2+x\right|^2-3\left|0,5x^2+x\right|+\dfrac{9}{4}-\dfrac{9}{4}\)
\(B=\left(\left|0,5x^2+x\right|-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
"="<=>\(\left|0,5x^2+x\right|=\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
g)Ta có:\(G=\left(x^2+x-6\right)\left(x^2+x+2\right)\)
Đặt \(x^2+x-2=t\)
\(\Rightarrow G=\left(t-4\right)\left(t+4\right)\)
\(G=t^2-16\ge-16\)
"="<=>\(x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
E=\(x^4-6x^3+9x^2+x^2-6x+9\)
\(=x^2\left(x^2-6x+9\right)+x^2-6x+9\\ =x^2\left(x-3\right)^2+\left(x-3\right)^2\ge0\forall x\\ E_{min}=0\Leftrightarrow x=3\)
\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)
suy ra Amin=-1
\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10
a) \(=\left[a^2+\left(a-1\right)\right]\left[a^2-\left(a-1\right)\right]=a^4-\left(a-1\right)^2=a^4-a^2+2a-1\)
b)\(=\left(a+2\right)\left(a^2-2a+4\right)\left(a-2\right)\left(a^2+2a+4\right)=\left(a^3+8\right)\left(a^3-8\right)=a^6-64\)
c)\(=x^2-4x+4-x^2+x+3x-3=1\)
d)\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6=-8\)
e) \(=4+12y+9y^2-4x^2+12xy-9y^2-12xy=-4x^2+12y+4\)
g)\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-x^3+1-x^3+1=-2x^3+6x^2+3\)
h) \(=\left(x^3+1\right)-\left(x^3-1\right)=2\)