Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2-6x+15\)
\(A=x^2+6x+9+6\)
\(A=\left(x+3\right)^2+6\ge6\)
vậy Min A=6\(\Leftrightarrow\)x=-3
b) Min B=4x
c) \(C=2x^2-6x+4\)
d) \(D=x^2+x+1\)
\(=x^2+2\cdot\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
vậy Min D\(=\frac{3}{4}\Leftrightarrow x=-\frac{1}{2}\)
Ta có : A = x2 - 6x + 15
=> A = x2 - 2.x.3 + 9 + 6
=> A = x2 - 2.x.3 + 32 + 6
=> A = (x - 3)2 + 6
Mà : (x - 3)2 \(\ge0\forall x\in R\)
Nên : (x - 3)2 + 6 \(\ge6\forall x\in R\)
Vậy GTNN của A là 6 khi x = 3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a) Ta có: \(A=x^2-5x+11\)
\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{19}{4}\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\)
Ta có: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\frac{5}{2}=0\)
hay \(x=\frac{5}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-5x+11\) là \(\frac{19}{4}\) khi \(x=\frac{5}{2}\)
b) Ta có: \(B=\left(x-3\right)^2+\left(x-11\right)^2\)
\(=x^2-6x+9+x^2-22x+121\)
\(=2x^2-28x+130\)
\(=2\left(x^2-14x+65\right)\)
\(=2\left(x^2-14x+49+16\right)\)
\(=2\left(x-7\right)^2+32\)
Ta có: \(\left(x-7\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-7\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-7\right)^2+32\ge32\forall x\)
Dấu '=' xảy ra khi x-7=0
hay x=7
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x-3\right)^2+\left(x-11\right)^2\) là 32 khi x=7
a) \(A=\left(x+2\right)^2-4\)
Vì \(\left(x+2\right)^2\ge0\)
Nên \(A=\left(x+2\right)^2-4\ge-4\)
Dấu "=" xảy ra khi \(x+2=0\Rightarrow x=-2\)
Vậy \(A_{min}=-4\) khi \(x=-2\)
\(x^2-4x+1=x^2-2\cdot x\cdot2+4-4+1=\left(x-2\right)^2-4+1\)
\(=\left(x-2\right)^2-3\) \(\forall x\in Z\)
\(\Rightarrow A_{min}=-3khix=2\)
\(a,A=x^2-4x+1=x^2-2.2.x+2^2-3=\left(x-2\right)^2-3\ge-3\)
dấu = xảy ra khi x-2=0
=> x=2
Vậy MinA=-3 khi x=2
\(b,B=5-8x-x^2=-\left(x^2+8x+5\right)=-\left(x^2+2.4.x+4^2\right)+9=-\left(x+4\right)^2+9\le9\)
dấu = xảy ra khi x+4=0
=> x=-4
Vậy MaxB=9 khi x=-4
\(c,C=5x-x^2=-\left(x^2-5x\right)=-\left(x^2-\frac{2.x.5}{2}+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
dấu = xảy ra khi \(x-\frac{5}{2}=0\)
=> x=\(\frac{5}{2}\)
Vậy Max C=\(\frac{25}{4}\)khi x=\(\frac{5}{2}\)
\(E=\frac{1}{x^2+5x+14}=\frac{1}{x^2+\frac{2.x.5}{2}+\frac{25}{4}+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)
\(\left(x+\frac{5}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\)
dấu = xảy ra khi \(x+\frac{5}{2}=0\)
=> x\(=-\frac{5}{2}\)
vì tử thức >0,mẫu thức nhỏ nhất và lớn hơn 0 => E lớnnhất khi mẫu thức nhỏ nhất
Vậy \(MaxE=\frac{31}{4}\)khi x\(=-\frac{5}{2}\)
Mk chỉ làm hai bài đầu gợi ý thôi chứ mk cũng ko đủ TG
a)\(A=x^2-6x+15\)
\(\Leftrightarrow A=x^2-6x+9+6\)
\(\Leftrightarrow A=\left(x-3\right)^2+6\)
Vì \(\left(x-3\right)^2\ge0\)\(\Rightarrow\)\(\left(x-3\right)^2+6\ge6\)
Dấu = xảy ra khi x - 3 = 0 ; x = 3
Vậy Min A = 6 khi x=3
b)\(B=x^2+4x\)
\(\Leftrightarrow B=x^2+4x+4-4\)
\(\Leftrightarrow B=\left(x+2\right)^2-4\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-4\ge-4\)\
Dấu = xảy ra khi x + 2 = 0 ; x = -2
Vậy Min B = -4 khi x =-2