Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2+ 3x+ 7
=x2 + 2*x*3/2+9/4 + 19/4
=(x+3/2)2 +19/4
ta có (x+3/2)2>0 nên (x+3/2)2+ 19/4>hoặc=19/4
=> AMin khi x+3/2=0
=>x=-3/2
A=(x2+4x+10)2 - 7(x2 +4x+11)+7
A=(x2+4x+10)2 -7(x2 +4x+11-7)
A=(x2+4x+10)2 -7(x2 +4x+10)
A=(x2 +4x+10)(x2+4x+10-7)
A=(x2 +4x+10)(x2+4x+3)
a) \(A=x^2+3x+7=x^2+2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+7\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)
Đẳng thức xảy ra khi x = -3/2
b) \(B=\left[\left(x-2\right)\left(x-5\right)\right]\left(x^2-7x-10\right)\)
\(=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\)
Đặt \(x^2-7x=t\).
\(B=t^2-10^2\ge-10^2=-100\)
Đẳng thức xảy rakhi \(t=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
a.
\(A=-x^2+x+1\\ =-\left(x^2-x-1\right)=-\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{5}{4}\right)\\ =-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
còn lại tương tự à!!
Bài 2: sửa đề: Tìm GTNN
a, \(A=x^2-6x+10=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\ge1\)
Dấu " = " khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)
Vậy \(MIN_A=1\) khi x = 3
b, \(B=x^2+y^2-2x+4y+5\)
\(=x^2-2x+1+y^2+4y+4\)
\(=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy \(MIN_B=0\) khi x = 1 và y = -2
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4