\(2x^2-x+4\)

2) I=\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2020

\(H=2x^2-x+4==2\left(x^2-\frac{1}{2}x+2\right)\)

\(=2\left[x^2-2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{31}{8}\)

\(=2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\)

Vì \(\left(x-\frac{1}{4}\right)^2\ge0\forall x\)

=> \(2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\forall x\)

Dấu " = " xảy ra khi và chỉ khi \(\left(x-\frac{1}{4}\right)^2=0\Rightarrow x=\frac{1}{4}\)

Vậy \(H_{min}=\frac{31}{8}\)khi x = 1/4

2) \(I=\frac{1}{2}x^2+3x=\frac{1}{2}\left(x^2+6x\right)\)

\(=\frac{1}{2}\left(x^2+2\cdot x\cdot3+3^2\right)-\frac{9}{2}\)

\(=\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\)

Vì \(\left(x+3\right)^2\ge0\forall x\)

=> \(\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\ge-\frac{9}{2}\forall x\)

Dấu " = " xảy ra khi và chỉ khi (x + 3)2 = 0 => x = -3

Vậy \(I_{min}=-\frac{9}{2}\)khi x = -3

11 tháng 10 2020

1) \(H=2x^2-x+4=2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{31}{8}=2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(2\left(x-\frac{1}{4}\right)^2\ge0\Rightarrow x=\frac{1}{4}\)

Vậy Min(H) = 31/8 khi x = 1/4

2) \(I=\frac{1}{2}x^2+3x=\frac{1}{2}\left(x^2+6x+9\right)-\frac{9}{2}=\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\ge-\frac{9}{2}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\frac{1}{2}\left(x+3\right)^2=0\Rightarrow x=-3\)

Vậy Min(I) = -9/2 khi x = -3

5 tháng 4 2019

\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)

\(\Leftrightarrow Px^2-2P=2x-1\)

\(\Leftrightarrow Px^2-2x-2P+1=0\)

*Nếu P = 0 thì ....

*Nếu P khác 0 thì pt trên là bậc 2

\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)

Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)

Nên Pmin = -1 

Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn

5 tháng 4 2019

denta ak bạn 

25 tháng 7 2019

\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)

Vậy \(A_{min}=1\Leftrightarrow x=-1\)

25 tháng 7 2019

\(B=x^2+4x=6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2>0\)

Vậy \(B_{min}=2\Leftrightarrow x=-2\)

16 tháng 3 2020

câu 1

a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)

b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)

Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được

\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)

16 tháng 3 2020

c) Để phân thức trên có giá trị nguyên thì :

\(3⋮x-2\)

=>\(x-2\inƯ\left(3\right)=\left(\pm1\pm3\right)\)

=>\(x\in\left\{1,3,-1,5\right\}\)

zậy ....

11 tháng 11 2018

\(P=2x\left(x+y\right)=2x^2+2xy\) Với x khác y, x khác -y

\(3x^2+y^2+2x-2y=1\)\(\Leftrightarrow2x^2+2xy+y^2+x^2+1-2xy+2x-2y=2\)

\(\Leftrightarrow P+\left(x-y+1\right)^2=2\)\(\Leftrightarrow P=2-\left(x-y+1\right)^2\le2\)vì \(\left(x-y+1\right)^2\ge0\)với mọi x, y là số thực

Vì P nguyên dương => P=1 

Khi đó \(\left(x-y+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}x-y+1=-1\\x-y+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y=-2\\x-y=0\left(loai\right)\end{cases}}\)

vì x khác y

26 tháng 3 2020

Bài 2:

\(A=x^2+2x+2012\)

 \(=\left(x^2+2x+1\right)+2011\)

\(=\left(x+1\right)^2+2011\)

Ta có: \(\left(x+1\right)^2\ge0,\forall x\)

\(\Rightarrow\left(x+1\right)^2+2011\ge2011,\forall x\)

Hay \(A\ge2011,\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy Min A=2011 tại x=-1

26 tháng 3 2020

làm chuẩn đấy

17 tháng 9 2017

ns thật vs c tôi ms đọc đề bài thôi đã ko hiểu j rồi ns chi đến lm giúp c. Sr nhé

17 tháng 9 2017

hihi, toán NC mà ms lên đây hỏi