K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

C\(=-1892+2x^2+y^2-2xy+10x\)

\(=\left(x-y\right)^2+\left(x+5\right)^2-1917\ge-1917\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x+5\right)^2=0\end{cases}}\Rightarrow x=y=-5\)

Vậy min C=-1917 khi x=y=-5

16 tháng 9 2018

bạn ghép x2vs2xyvsy2

x2vs10x+?

tích mik

16 tháng 9 2018

\(C=-1892+2x^2+y^2-2xy+10x-14y\)

\(C=\left(x^2-2xy+y^2\right)+x^2+10x-14y-1892\)

\(C=\left[\left(x-y\right)^2+2\left(x-y\right).7+49\right]+\left(x^2-4x+4\right)-1945\)

\(C=\left(x-y+7\right)^2+\left(x-2\right)^2-1945\)

Mà  \(\left(x-y+7\right)^2\ge0\forall x;y\)

       \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow C\ge-1945\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}x-y+7=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=9\\x=2\end{cases}}\)

Vậy  \(MinC=-1945\Leftrightarrow\left(x;y\right)=\left(2;9\right)\)

23 tháng 9 2016

A chỉ đạt max

B=(x^2+y^2+1-2xy+2x-2y)+(x^2-4x+4)-10

B=(x-y+1)^2+(x-2)^2-10\(\ge\)-10

C=((x^2+y^2-2xy)-10(x-y)+25)+3(y^2-2y+1)+4

C=(x-y-5)^2+3(y-1)^2+4\(\ge\)4

17 tháng 8 2016

tách hđt #@

14 tháng 6 2018

1,2x2+2y2+z2+2xy+2xz+2yz+10x+6y+34=0

<=>(x2+y2+z2+2xy+2xz+2yz)+(x2+10x+25)+(y2+6y+9)=0

<=>(x+y+z)2+(x+5)2+(y+3)2=0

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Rightarrow}\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}}\)

2, A=2x2+4y2+4xy+2x+4y+9

=(x2+4xy+4y2)+(2x+4y)+x2+9

=[(x+2y)2+2(x+2y)+1]+x2+8

=(x+2y+1)2+x2+8

Vì \(\hept{\begin{cases}\left(x+2y+1\right)^2\ge0\\x^2\ge0\end{cases}}\Rightarrow\left(x+2y+1\right)^2+x^2\ge0\)

\(\Rightarrow\left(x+2y+1\right)^2+x^2+8\ge8\)

Dấu "=" xảy ra khi x=0,y=-1/2

Vậy Amin = 8 khi x=0,y=-1/2

14 tháng 6 2018

Bài 1:

Ta có:\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2xz+2yz\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Vì 3 vế trên đều dương ,nên ta có

\(\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}z=0-y-x\\x=-5\\y=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}z=0+3+5=8\\x=-5\\y-3\end{cases}}}\)

Vậy ...........................................................................................................................

9 tháng 7 2017

Ta có : 

\(x^2+3y^2+2xy-10x-14y+18=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-10x-10y+25+\left(2y^2-4y+2\right)-9=0\)

\(\Leftrightarrow\left(x+y\right)^2-2.\left(x+y\right).5+25+2\left(y^2-2y+1\right)=9\)

\(\Leftrightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2=9\)

Vì \(2\left(y-1\right)^2\ge0\forall y\)nên  \(\left(x+y-5\right)^2\le9\)hay \(\left(M-5\right)^2\le9\)

\(\Rightarrow-3\le M-5\le3\Leftrightarrow2\le M\le8\)

  • \(Min_M=2\)khi \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
  • \(Max_M=8\)khi\(\hept{\begin{cases}x=7\\y=1\end{cases}}\)