Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{3x^2-6x+17}{x^2-2x+5}\)
= \(\dfrac{3x^2-6x+15+2}{x^2-2x+5}\)
=\(\dfrac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}\)
= \(\dfrac{3\cdot\left(x^2-2x+5\right)}{x^2-2x+5}+\dfrac{2}{x^2-2x+5}\)
= \(3+\dfrac{2}{x^2-2x+5}\)
= \(3+\dfrac{2}{x^2-2x+1+4}\)
= \(3+\dfrac{2}{\left(x-1\right)^2+4}\)
vì (x-1)2 ≥ 0 ∀ x
⇔ (x-1)2 +4 ≥ 4
⇔\(\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{1}{2}\)
⇔\(3+\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{7}{2}\)
⇔ A \(\le\dfrac{7}{2}\)
⇔ Min A =\(\dfrac{7}{2}\)
khi x-1=0
⇔ x=1
vậy ....
Ta có:\(B=\dfrac{2x^2-16x+41}{x^2-8x+22}\)
\(B=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)
\(B=2-\dfrac{3}{x^2-8x+16+6}\)
\(B=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{5}{2}\)
\(\Rightarrow MINB=\dfrac{5}{2}\Leftrightarrow x=4\)
\(B=\dfrac{3x^2-2x+3}{x^2+1}=\dfrac{2x^2+x^2-2x+1+2}{x^2+1}\\ =\dfrac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}\\ =\dfrac{2\left(x^2+1\right)}{x^2+1}+\dfrac{x^2-2x+1}{x^2+1}\\ =2+\dfrac{\left(x-1\right)^2}{x^2+1}\)
Do \(\dfrac{\left(x-1\right)^2}{x^2+1}\ge0\forall x\)
\(\Rightarrow B=\dfrac{\left(x-1\right)^2}{x^2+1}+2\ge2\forall x\)
Dấu "=" xảy ra khi :
\(\dfrac{\left(x-1\right)^2}{x^2+1}=0\\ \Leftrightarrow\left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\)
Vậy \(B_{\left(Min\right)}=2\) khi \(x=1\)
\(A=\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}=\dfrac{4x^2-4x-2x+1+1-1}{\left(2x-1\right)^2}\\ =\dfrac{\left(4x^2-4x+1\right)-\left(2x-1\right)-1}{\left(2x-1\right)^2}\\ =\dfrac{\left(2x-1\right)^2}{\left(2x-1\right)^2}-\dfrac{2x-1}{\left(2x-1\right)^2}-\dfrac{1}{\left(2x-1\right)^2}\\ =1-\dfrac{1}{2x-1}-\dfrac{1}{\left(2x-1\right)^2}\)
Đặt \(-\dfrac{1}{2x-1}=y\)
\(\Rightarrow A=1+y+y^2\\ =y^2+y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Do \(\left(y+\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu "=" xảy ra khi:
\(\left(y+\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y+\dfrac{1}{2}=0\\ \Leftrightarrow y=-\dfrac{1}{2}\\ \Leftrightarrow-\dfrac{1}{2x-1}=-\dfrac{1}{2}\\ \Leftrightarrow2x-1=2\\ \Leftrightarrow2x=3\\ \Leftrightarrow x=\dfrac{3}{2}\)
Vậy \(A_{\left(Min\right)}=\dfrac{3}{4}\) khi \(x=\dfrac{3}{2}\)
\(\text{a) }\dfrac{x^2+x+1}{x^2+2x+1}\\ =\dfrac{x^2+2x-x+1+1-1}{x^2+2x+1}\\ =\dfrac{\left(x^2+2x+1\right)-\left(x+1\right)+1}{x^2+2x+1}\\ =\dfrac{x^2+2x+1}{x^2+2x+1}-\dfrac{x+1}{\left(x+1\right)^2}+\dfrac{1}{\left(x+1\right)^2}\\ =1-\dfrac{1}{x+1}+\dfrac{1}{\left(x+1\right)^2}\left(1\right)\\ Đặt\text{ }\dfrac{1}{x+1}=y\\ \Rightarrow\left(1\right)=1-y+y^2\\ =y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ Do\text{ }\left(y-\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\\ \left(y-\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y-\dfrac{1}{2}=0\\ \Leftrightarrow y=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{ 1}{x+1}=\dfrac{1}{2}\\ \Leftrightarrow x+1=2\\ \Leftrightarrow x=1\\ Vậy\text{ }GTNN\text{ }của\text{ }phân\text{ }thức\text{ }là\text{ }\dfrac{3}{4}\text{ }khi\text{ }x=1\)
\(\text{b) }\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\\ =\dfrac{4x^2-4x-2x+1+1-1}{\left(2x-1\right)^2}\\ =\dfrac{\left(4x^2-4x+1\right)-\left(2x-1\right)-1}{\left(2x-1\right)^2}\\ =\dfrac{\left(2x-1\right)^2}{\left(2x-1\right)^2}-\dfrac{2x-1}{\left(2x-1\right)^2}-\dfrac{1}{\left(2x-1\right)^2}\\ =1-\dfrac{1}{2x-1}-\dfrac{1}{\left(2x-1\right)^2}\left(1\right)\\ Đặt\text{ }-\dfrac{1}{2x-1}=y\\ \Rightarrow\left(1\right)=1+y+y^2\\ =y^2+y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ Do\text{ }\left(y+\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\\ \left(y+\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y+\dfrac{1}{2}=0\\ \Leftrightarrow y=-\dfrac{1}{2}\\ \Leftrightarrow-\dfrac{1}{2x-1}=-\dfrac{1}{2}\\ \Leftrightarrow2x-1=2\\ \Leftrightarrow2x=3\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\text{ }GTNN\text{ }của\text{ }biểu\text{ }thức\text{ }là\text{ }\dfrac{3}{4}\text{ }khi\text{ }x=\dfrac{3}{2}\)
A= \(\dfrac{x^2-4x+1}{x^2}\)
ĐKXĐ x≠0
A= \(\dfrac{x^2}{x^2}-\dfrac{4x}{x^2}+\dfrac{1}{x^2}\)
=\(1-\dfrac{4}{x}+\dfrac{1}{x^2}\)
đặt \(\dfrac{1}{x}=y\) ta có
1-4y+y2
= y2-4y+1
=(y2-4y+4)-3
= (y-2)2 -3
do (y-2)2 ≥ 0 ∀x
=> (y-2)2 -3 ≥ -3
=> A ≥ -3
=> Amin =-3dấu '=' xảy ra khi
y-2=0
=> y=2
=> \(\dfrac{1}{x}=2\)
=> x=\(\dfrac{1}{2}\)
vậy GTNN A =-3 khi x=\(\dfrac{1}{2}\)
a.
\(A=\dfrac{x^2-4x+1}{x^2}\)
\(\Rightarrow A=\dfrac{x^2-4x+4-3}{x^2}\)
\(\Rightarrow A=\dfrac{\left(x-2\right)^2-3}{x^2}\)
Ta có: \(\left(x-2\right)^2-3\ge-3\)
\(\Rightarrow x=2\)
Khi đó ta được Min A = \(\dfrac{\left(2-2\right)-3}{2^2}\ge\dfrac{-3}{4}\)
Vậy Min A = \(\dfrac{-3}{4}\)
bt2.
A=[2(4x^2+4x+5)-2]/(4x^2+4x+5)
=2-2/[(4x+1)^2+4]
A>=2-2/4=3/2
khi x=-1/4
\(A=\dfrac{2x+1}{x^2+2}\)
*Min A:
Ta có: \(A=\dfrac{2x+1}{x^2+2}\)
\(=\dfrac{4x+2}{2\left(x^2+2\right)}=\dfrac{\left(x^2+4x+4\right)-\left(x^2+2\right)}{2\left(x^2+2\right)}\)
\(=\dfrac{\left(x+2\right)^2}{2\left(x^2+1\right)}+\dfrac{1}{2}\ge\dfrac{1}{2},\forall x\in R\)
Vậy \(Min_A=\dfrac{1}{2}khi\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
*Max A:
Ta có: \(A=\dfrac{2x+1}{x^2+2}\)
\(=\dfrac{x^2+2-x^2+2x-1}{x^2+2}\)
\(=\dfrac{(x^2+2)-(x^2-2x+1)}{x^2+2}\)
\(=\dfrac{x^2+2}{x^2+2}-\dfrac{\left(x-1\right)^2}{x^2+2}\)
\(=1-\dfrac{\left(x-1\right)^2}{x^2+2}\le0,\forall x\in R\)
Vậy \(Max_A=1khi\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
a: \(A=x^2-3x+\dfrac{9}{4}-\dfrac{5}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}>=-\dfrac{5}{4}\)
Dấu '=' xảy ra khi x=3/2
c: \(x^2-x+2=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\)
=>\(\dfrac{3}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}}< =3:\dfrac{7}{4}=\dfrac{12}{7}\)
=>C>=-12/7
Dấu '=' xảy ra khi x=1/2
Đặt \(x-1=t\Rightarrow x=t+1\)
\(A=\dfrac{2\left(t+1\right)^2-6\left(t+1\right)+5}{t^2}=\dfrac{2t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+2=\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
\(A_{min}=1\) khi \(t=1\Rightarrow x=2\)