K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2018

a) A = x4 + x2 + 2

Do : x4 ≥ 0 ∀x

x2 ≥ 0 ∀x

⇒ x4 + x2 + 2 ≥ 2

⇒ AMin = 2 ⇔ x = 0

b) B = 3x2 - 21x + 15

B = 3( x2 - \(2\dfrac{7}{2}x+\dfrac{49}{4}\) ) + 15 - \(\dfrac{147}{4}\)

B = 3( x - \(\dfrac{7}{2}\))2 - \(\dfrac{87}{4}\)

Do : 3( x - \(\dfrac{7}{2}\))2 ≥ 0 ∀x

⇒ 3( x - \(\dfrac{7}{2}\))2 - \(\dfrac{87}{4}\) ≥ - \(\dfrac{87}{4}\)

⇒ BMin = - \(\dfrac{87}{4}\) ⇔ x = \(\dfrac{7}{2}\)

c) C = x2 - 4xy + 5y2 + 10x - 22y + 28

C = x2 - 4xy + 4y2 + 10x - 20y + 25 + y2 - 2y + 1 + 2

C = ( x - 2y)2 + 10( x - 2y) + 25 + ( y - 1)2 + 2

C = ( x - 2y + 5)2 + ( y - 1)2 + 2

Do : ( x - 2y + 5)2 ≥ 0 ∀xy

( y - 1)2 ≥ 0 ∀y

⇒ ( x - 2y + 5)2 + ( y - 1)2 + 2 ≥ 2

⇒ CMin = 2 ⇔ x = - 3 ; y = 1

30 tháng 10 2016

hjvbm 

28 tháng 8 2020

\(C=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)

\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y-5\right)^2+\left(y-1\right)^2+2\ge2\)

Đẳng thức khó tìm quá huhu

1 tháng 10 2017

max A= -201 tại x=10(câu này dễ)

B= (x-2y+5)^2+(y-1)^2+2 suy ra max B=2 tại y=1 => x = -3. ^_^

6 tháng 8 2017

\(A=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Vậy \(A_{min}=2\) tại \(x=-3;y=1\)

10 tháng 11 2019

bạn có thể tham khảo ở đây nhé

https://hoc24.vn/hoi-dap/question/394806.html

23 tháng 7 2017

GTNN nak !!!

\(B=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+27\)

\(=\left[\left(x-2y\right)^2+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\) có GTNN là 2

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Vậy \(B_{min}=2\) tại \(x=-3;y=1\)

17 tháng 12 2017

\(x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(=\left(2y-x-5\right)^2+\left(y-1\right)^2+2\)

Ta có :

\(\left(2y-x-5\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2y-x-5\right)^2+\left(y-1\right)^2+2\ge2\forall x\)

Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(y-1\right)^2=0\\\left(2y-x-5\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y-1=0\\2y-x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=-3\end{matrix}\right.\)

Vậy biểu thức đạt GTNN = 2 ⇔ \(\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

13 tháng 6 2017

a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)

\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)

\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)

\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)

Dấu "=" xảy ra khi x=-1 và y=0

13 tháng 6 2017

b)\(5x^2+y^2+2xy-4x=\left(x^2+2xy+y^2\right)+\left(4x^2-4x+1\right)-1\)

\(=\left(x+y\right)^2+\left(2x-1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi x=1/2 và y=-1/2