Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^2-2x-2}{x^2+x+1}=\frac{-2x^2-2x-2}{x^2+x+1}+\frac{3x^2}{x^2+x+1}=\frac{3x^2}{x^2+x+1}-2\)
Ta có:\(\frac{3x^2}{x^2+x+1}\ge0\Rightarrow\frac{3x^2}{x^2+x+1}-2\ge-2\)
=>Min A=-2 <=>3x2=0<=>x=0
\(\frac{27-12x}{x^2+9}=\frac{\left(x^2-12x+36\right)-\left(x^2+9\right)}{x^2+9}=\frac{\left(x-6\right)^2}{x^2+9}-1\)
ta thấy (x-6)2 >= 0 vs mọi x
x2 + 9 >0
=> (x-6)2 / x2 +9 -1 >= -1
Gợi ý làm phần a) , phần còn lại tương tự nha
\(A=\frac{x^2-2x-2}{x^2+x+1}\)
\(\Leftrightarrow
A\left(x^2+x+1\right)=x^2-2x-2\)
\(\Leftrightarrow
Ax^2+Ax+A-x^2+2x+2=0\)
\(\Leftrightarrow
x^2\left(A-1\right)+x\left(A+2\right)+A+2=0\)
Xét \(\Delta=\left(A+2\right)^2-4\left(A-1\right)\left(A+2\right)=A^2+4A+4-4\left(A^2+A-2\right)=-3A^2+12\ge0\)
\(\Leftrightarrow-2\le A\le2\)
Vậy MinA=-2 tại x=0, MaxA=2 tại x=-2
Chúc bạn học tốt
a)2x^2-4xy+4y^2+2x+5=x^2-4xy+4y^2+x^2+2x+1+4=(x-2y)^2+(x+1)^2+4>=4(dấu = tự tìm nhé)
b)x(1-x)(x-3)(4-x)=x(x-1)(x-3)(x-4)
=(x^2-4x)(x^2-4x+3)
Đặt x^2-4x=t(t>=-4) bt viết lại t(t+3)=t^2+3t>=-9/4
Dấu= xảy ra khi t=-3/2 >>>tìm x
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
làm tạm câu này vậy
a/\(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)
\(\Leftrightarrow\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)+4x^4=9x^4\)
\(\Leftrightarrow\left\{\left(x^2-x+1\right)^2+2x^2\right\}=\left(3x^2\right)^2\)
\(\Leftrightarrow\left(x^2-x+1\right)^2+2x^2=3x^2\)(vì 2 vế đều không âm)
\(\Leftrightarrow\left(x^2-x+1\right)=x^2\)
\(\Leftrightarrow\left|x\right|=x^2-x+1\)\(\left(x^2-x+1=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=x^2-x+1\\-x=x^2-x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x^2+1=0\left(vo.nghiem\right)\end{cases}}}\)
Vậy...
Ta có:
\(A=x^4+2x^3+9x^2+8x+27\)
\(\Leftrightarrow A=x^4+x^2+16+2x^3+8x+8x^2+11\)
\(\Leftrightarrow A=\left(x^2+x+4\right)^2+11\)
\(\Leftrightarrow A=\left(x^2+x+\dfrac{1}{4}+\dfrac{15}{4}\right)^2+11\)
\(\Leftrightarrow A=\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\right]^2+11\)
\(\ge\left(\dfrac{15}{4}\right)^2+11=\dfrac{401}{16}\)
Vậy \(A_{min}=\dfrac{401}{16}\), đạt được khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)