K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=2x^2-6x+10\)

\(=2\left(x^2-3x+5\right)\)

\(=2\left(x^2-3x+\dfrac{9}{4}+\dfrac{11}{4}\right)\)

\(=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{2}>=\dfrac{11}{2}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{3}{2}=0\)

=>\(x=\dfrac{3}{2}\)

2 tháng 9 2017

a) \(A=2x^2\)\(+\)\(10\)\(-\)\(1\)

\(=2\left(x^2+5x-\frac{1}{2}\right)\)

\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}-\frac{1}{2}\right)\)

\(=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)

\(=2\left(x+\frac{5}{2}\right)^2\)\(=\frac{27}{2}\)> hoặc = \(\frac{-27}{2}\)\(=-13,5\)

Dấu bằng xảy ra  \(\Leftrightarrow\)\(x+\frac{5}{2}=0\)

                                    \(x=\frac{-5}{2}=-2,5\)

Vậy GTLN của A bằng -13,5 khi x = -2,5

b)  \(B=3x-2x^2\)

\(=\)\(-2\left(x^2-2.x.\frac{3}{4}+\frac{9}{16}-\frac{9}{16}\right)\)

\(=-2\left[\left(x-\frac{3}{4}\right)^2-\frac{9}{16}\right]\)

\(=-2\left(x-0,75\right)^2\)\(+\)\(\frac{9}{8}\)< hoặc = \(\frac{9}{8}\)\(=\)\(1,125\)

Dấu bằng xảy ra  \(\Leftrightarrow\)\(x-0,75=0\)

                                    \(x=0,75\)

Vậy GTLN của B bằng 1,125 khi x = 0,75

3 tháng 9 2017

kjkkm

8 tháng 9 2019

Tớ làm đc 1b và 2ab thôi hehe

NV
22 tháng 1 2024

Đặt \(x-1=t\Rightarrow x=t+1\)

\(A=\dfrac{2\left(t+1\right)^2-6\left(t+1\right)+5}{t^2}=\dfrac{2t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+2=\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

\(A_{min}=1\) khi \(t=1\Rightarrow x=2\)

8 tháng 9 2019

Xét \(2F=4x^2+18y^2-12xy-12x-24y+4038\)

\(=\left(2x-3y-3\right)^2+\left(3y-7\right)^2+3980\ge3980\)

Rồi tự làm tiếp:)

23 tháng 12 2016

h mk di minh tra loi noi that

24 tháng 12 2016

đặt t=x+y

x^2 +2xy+6x+6y+2y^2+8=0

x^2+2xy+y^2+6(x+y)+8= -y^2

(x+y)^2 + 6(x+y)+8 = -y^2

t^2 +6t +8= -y^2

(t+2)(t+4) = -y^2

do y^2 >=0 với mọi y

-y^2 <=0 với mọi y

t^2+6t+8<=0

(t+2)(t+4)<=0

* Trường hợp 1:   t+2<=0 và t+4>=0        (1)

t<=-2 và t>=4

* trường hợp 2:  t+2>=0 và t+4<=0           (2)

t>= -2 và t<= -4   ( vô nghiệm)

 Từ (1), (2) ta có:

-4<= t <=-2 

-4 <= x+y <= -2

-4 + 2016 <= x+y+ 2016 <= -2 +2016

2012 <= x+y +2016 <= 2014

Bmin= 2012

Bmax= 2014

 *Bmin= 2012 khi x+y+2016 = 2012 và -y^2= 0

thì x=-4 và y=0

* Bmax= 2014 khi x+y+2016 = 2014 và -y^2= 0

thì x=-2 và y=0

vậy Bmin= 2012 khi (x,y) = (-4, 0)

Bmax= 2014 khi (x,y)= (-2,0)

2 tháng 10 2020

+) \(B=2x^2-4x+1\)

\(\Leftrightarrow B=2\left(x^2-2x+\frac{1}{2}\right)\)

\(\Leftrightarrow B=2\left(x^2-2x+1-\frac{1}{2}\right)\)

\(\Leftrightarrow B=2\left(x-1\right)^2-1\ge-1\)

Min B = -1 \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

2 tháng 10 2020

B = 2x2 - 4x + 1

= 2( x2 - 2x + 1 ) - 1

= 2( x - 1 )2 - 1 ≥ -1 ∀ x

Dấu "=" xảy ra khi x = 1

=> MinB = -1 <=> x = 1

D = -3x2 - 6x + 9 ( vầy chứ nhỉ ? )

= -3( x2 + 2x + 1 ) + 12

= -3( x + 1 )2 + 12 ≤ 12 ∀ x

Dấu "=" xảy ra khi x = -1

=> MaxD = 12 <=> x = -1

2x2 + y2 + 2xy - 6x - 2y + 10

= x2 + y2 + 12 + 2xy - 2x - 2y + x2 - 4x + 4 + 5

= (x + y - 1)2 + (x - 2)2 + 5 ≥≥ 5

Dấu ''='' xảy ra khi {x+y−1=0x−2=0{x+y−1=0x−2=0 ⇔{y=−1x=2⇔{y=−1x=2

Vậy Min = 5 khi x = 2 và y = - 1

Ta có: \(B=2x^2+y^2-2xy+6x+10\)

\(=x^2-2xy+y^2+x^2+6x+9+1\)

\(=\left(x-y\right)^2+\left(x+3\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi x=y=-3

Vậy: \(B_{min}=1\) khi (x,y)=(-3;-3)