Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=2015-5\left|x-386\right|-5\left|x-389\right|\)
\(D=2015-5\left(\left|x-386\right|+\left|389-x\right|\right)\)
\(D\le2015-5\left|x-386+389-x\right|\)
\(D\le2015-15=2000\)
Dấu "=" xảy ra khi: \(386\le x\le389\)
\(M=2016-\left|x-2015\right|-\left|x-1975\right|-\left|x-1945\right|\)
\(M=2016-\left(\left|x-2015\right|+\left|x-1975\right|+\left|x-1945\right|\right)\)
Đặt: \(L=\left|x-2015\right|+\left|x-1975\right|+\left|x-1945\right|\)
\(L=\left|x-2015\right|+\left|1945-x\right|+\left|x-1975\right|\)
\(L\ge\left|x-2015+1945-x\right|+\left|x-1975\right|\)
\(L\ge70+\left|x-1975\right|\ge70\)
Suy ra: \(M-L\le2016-70=1946\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}1945\le x\le2015\\x=1975\end{cases}}\Leftrightarrow x=1975\)
a) \(A=\left|x-1\right|+2018\)
Vì \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow A\ge2018\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Ta có: (3x+1)4 0 và \(Ix^2-\frac{1}{9}I\ge0\) Với mọi x
=> \(\left(3x+1\right)^4+Ix^2-\frac{1}{9}I+5\ge5\) với mọi x
=> \(\frac{2015}{\left(3x+1\right)^4+Ix^2-\frac{1}{9}I+5}\le\frac{2015}{5}=403\)
=> GTLN của biểu thức là 403
Đạt được khi x=-1/3
giá trị nhỏ nhất là 0
vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
dấu bằng xảy ra khi
x - 2013 = 0
x-2014=0
x-2015=0
vậy không có giá trị của x thỏa mãn giá trị nhỏ nhất của biểu thức
Gọi biểu thức trên là A
Ta thấy
A=/x-2013/+/2014-x/+/x-2015/ sẽ lớn hơn hoặc bằng:
/x-2013+2014-x/=/1/=1
Min A=1
Ta có \(\left|2014-x\right|\ge0\)với mọi giá trị của x
\(\left|2015-x\right|\ge0\)với mọi giá trị của x
\(\left|2016-x\right|\ge0\)với mọi giá trị của x
=> \(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge0\)với mọi giá trị x
=> GTNN của A là 0.
Có I 2014 - x I + I 2016 - x I = I x - 2014 I + I 2016 - x I \(\ge\)I x - 2014 + 2016 - x I = 2
Dấu = xảy ra \(\Leftrightarrow\)(x - 2014)(2016 - x)\(\ge\)0
TH1: x- 2014\(\ge\)0 và 2016 - x\(\ge\)0
=> x\(\ge\) 2014 và x\(\le\)2016 ( chọn )
TH2: Làm tương tự => loại
Có I 2015 -x I \(\ge\)0
Dấu = xảy ra khi x = 2015
Vậy A min = 2 khi x = 2015
Vì x^2;x^4;x^6;......;x^100 đều >= 0 => x^2+x^4+....+x^100 + 2 >= 2
=> D >= 2^2015 + 2^2015 = 2.2^2015 = 2^2016
Dấu "=" xảy ra <=> x=0
Vậy GTNN của D = 2^2016 <=> x=0
Tk mk nha