K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2018

A = \(\left|x+2\right|+3\)

Ta có : \(\left|x+2\right|\ge0\) với mọi x

\(\Rightarrow\left|x+2\right|+3\ge3\) với mọi x

Dấu = xảy ra \(\Leftrightarrow\left|x+2\right|=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy \(Min_A=3\Leftrightarrow x=-2\)

16 tháng 4 2018

thanks!

27 tháng 7 2015

Nếu x + 5 > 0 \(\Leftrightarrow\) x > - 5 thì

A = x + 5 + 2 - x = 7

Nếu x + 5 < 0 \(\Leftrightarrow\) x < - 5 thì

A = - x - 5 + 2 - x = -2x - 3

9 tháng 5 2022

<=>\(\left\{{}\begin{matrix}x+6=x.khi.x+6\ge0\Leftrightarrow x\ge-6\left(1\right)\\-\left(x+6\right)=x.khi.x+6< 0\Leftrightarrow x< -6\left(2\right)\end{matrix}\right.\)

Giải pt (1) khi x >= -6 ta được :

x+6 = x

<=> x+6 -x =0

<=> 6 = 0 ( vô lý)

Giải pt (2) khi x < -6 ta được :

-(x+6) = x 

<=> -x - 6 -x = 0

<=>-2x-6 =0 

<=> -2x = 6

<=> x = -3 ( loại )

Vậy bpt trên vô nghiệm.

9 tháng 5 2022

<=>{x+6=x.khi.x+6≥0⇔x≥−6(1)−(x+6)=x.khi.x+6<0⇔x<−6(2){x+6=x.khi.x+6≥0⇔x≥−6(1)−(x+6)=x.khi.x+6<0⇔x<−6(2)

Giải pt (1) khi x >= -6 ta được :

x+6 = x

<=> x+6 -x =0

<=> 6 = 0 ( vô lý)

Giải pt (2) khi x < -6 ta được :

-(x+6) = x 

<=> -x - 6 -x = 0

<=>-2x-6 =0 

<=> -2x = 6

<=> x = -3 ( loại )

Vậy pt trên vô nghiệm.

13 tháng 7 2018

\(4x^2-x-\frac{3}{16}\)

\(=\left(2x\right)^2-x+\frac{1}{4}-\frac{7}{16}\)

\(=\left(2x-\frac{1}{2}\right)^2-\frac{7}{16}\)

Mà  \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-\frac{1}{2}\right)^2-\frac{7}{16}\ge-\frac{7}{16}\)

Dấu " = " xảy ra \(\Leftrightarrow\left(2x-\frac{1}{2}\right)^2=0\)

\(x=\frac{1}{4}\)

Vậy GTNN của biểu thức bằng \(-\frac{7}{16}\) tại \(x=\frac{1}{4}\)

13 tháng 7 2018

Gọi biểu thức trên là A. Ta có:

\(A=4x^2-x-\frac{3}{16}\)

\(A=4x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2-\frac{3}{16}\)

\(A=\left(2x-\frac{1}{2}\right)^2-\frac{1}{4}-\frac{3}{16}\)

\(A=\left(2x-\frac{1}{2}\right)^2-\frac{7}{16}\)

Nhận xét: \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-\frac{1}{2}\right)^2-\frac{7}{16}\ge\frac{-7}{16}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{4}\)

Vậy \(minA=\frac{-7}{16}\Leftrightarrow x=\frac{1}{4}\)

9 tháng 11 2017

| 4x - 3m | = 2x + m

=> 4x - 3m \(\in\){ 2x + m; -2x - m }

+) 4x - 3m = 2x + m               +) 4x - 3m = -2x - m

     4x - 2x = m + 3m                   4x + 2x = -m + 3m

      2x       = 4m                          6x          = 2m

Mới học lớp 7 nên mình chưa biết " giải phương trình " là gì, mình chỉ biết đến đây thôi :)

9 tháng 9 2019

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

b/

\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)

\(=16+8+20=44\)

\(\Rightarrow B\ge11\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

2 tháng 8 2017

Phần 1:
Ta thấy: \(B=x^2+2xy+y^2+16=\left(x+y\right)^2+16\)
Do \(\left(x+y\right)^2\ge0\) ( mọi x và y )
\(\Rightarrow\left(x+y\right)^2+16\ge16\) ( mọi x và y )
=> GTNN của biểu thức \(B=\left(x+y\right)^2+16\) bằng 16 khi và chỉ khi:
\(\left(x+y\right)^2=0\)
\(\Rightarrow x+y=0\)
\(\Rightarrow x=-y\)
Vậy GTNN của biểu thức \(B=x^2+2xy+y^2+16\) bằng 16 khi và chỉ khi \(x=-y\).

2 tháng 8 2017

Phần 2:
Ta thấy: \(C=9x^2+6x+y^2+16=9x^2+6x+1+y^2+15=\left(3x+1\right)^2+y^2+15\)
Do \(\left(3x+1\right)^2\ge0\) ( mọi x )
\(y^2\ge0\) ( mọi y )
\(\Rightarrow\left(3x+1\right)^2+y^2\ge0\) ( mọi x và y )
\(\Rightarrow\left(3x+1\right)^2+y^2+15\ge15\) ( mọi x và y )
=> GTNN của \(C=\left(3x+1\right)^2+y^2+15\) bằng 15 khi và chỉ khi:
\(\left(3x+1\right)^2+y^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(3x+1\right)^2=0\\y^2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+1=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=0\end{cases}}\)
Vậy GTNN của biểu thức \(C=9x^2+6x+y^2+16\) bằng 15 khi và chỉ khi \(x=\frac{-1}{3}\) ; \(y=0\).

6 tháng 11 2019

\(A=x\left(x-3\right)\left(x-4\right)\left(x-7\right)\)

\(=\left[x\left(x-7\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]\)

\(=\left[x^2-7x\right]\left[x^2-7x+12\right]\)

Đặt: \(t=x^2-7x\)

=> \(A=t\left(t+12\right)=t^2+12t+36-36\)

\(=\left(t+6\right)^2-36\ge-36\)

Dấu "=" xảy ra <=> \(t=-6\)

khi đó: \(x^2-7x=-6\Leftrightarrow x^2-x-6x+6=0\)

<=> \(x\left(x-1\right)-6\left(x-1\right)=0\)

<=> (x - 6 ) ( x -  1) =0

<=> x = 6 hoặc x =1

Vậy GTNN của A là -36  đạt tại x =6 hoặc x =1 .

b) \(B=x^2+xy-y^2-3x-3y\)

Xem lại đề nhé \(y^2\)hay \(-y^2\)?