x2+x+1/x2+2x+2

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

\(x^2+x+\frac{1}{x^2}+2x+2=\left(x^2+2+\frac{1}{x^2}\right)+\left(x+1\right)^2-1=\left(x+\frac{1}{x}\right)^2+\left(x+1\right)^2-1\ge-1\)

Vậy giá trị nhỏ nhất của biểu thức trên là -1 khi x=-1.

Xét \(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\)

=> PT luôn có 2 nghiệm x1,x2 với mọi m

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\)

\(\Rightarrow A=\left(x_1+x_2\right)^2-3x_1x_2=\left(\frac{1-2m}{2}\right)^2-\frac{3\left(m-1\right)}{2}\)

\(=\frac{1-4m+4m^2-6m+6}{4}=\frac{4m^2-10m+7}{4}\)

\(=\frac{\left(2m-\frac{5}{2}\right)^2+\frac{3}{4}}{4}\ge\frac{3}{16}\)

Dấu "=" xảy ra khi \(2m=\frac{5}{2}\Rightarrow m=\frac{5}{4}\Rightarrow\frac{a}{b}=\frac{5}{4}\)

\(\Rightarrow4a=5b\Rightarrow2a=\frac{5b}{2}\)

lúc đó \(P=\frac{5b}{2}+2b=\frac{9b}{2}\)

22 tháng 5 2018

khó oạch

22 tháng 5 2018

\(A=\frac{x^4+2x^2+25}{4x^2}=\frac{x^4+25}{4x^2}+\frac{2x^2}{4x^2}=\frac{x^4+25}{4x^2}+\frac{1}{2}\)

vì \(x^4>=0;25>0\Rightarrow\frac{x^4+25}{4x^2}+\frac{1}{2}>=\frac{2\sqrt{25\cdot x^4}}{4x^2}+\frac{1}{2}=\frac{10x^2}{4x^2}+\frac{1}{2}=\frac{5}{2}+\frac{1}{2}=3\)(bđt cosi)
dấu = xảy ra khi \(x^4=25\Rightarrow x^2=5\Rightarrow x=+-\sqrt{5}\)

vậy min của A là 3 khi x= \(+-\sqrt{5}\)

NV
22 tháng 4 2020

Câu 2:

\(\Delta'=\left(m-1\right)^2-m+3=m^2-3m+4=\left(m-\frac{3}{2}\right)^2+\frac{7}{4}>0;\forall m\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-3\end{matrix}\right.\)

\(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=4\left(m-1\right)^2-2\left(m-3\right)\)

\(=4m^2-10m+10=4\left(m-\frac{5}{4}\right)^2+\frac{15}{4}\ge\frac{15}{4}\)

\(\Rightarrow P_{min}=\frac{15}{4}\) khi \(m=\frac{5}{4}\)

NV
22 tháng 4 2020

Câu 1:

Để pt có 2 nghiệm \(\left\{{}\begin{matrix}m\ne0\\\Delta'=\left(m-2\right)^2-m\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\-m+4\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m\le4\end{matrix}\right.\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{2\left(m-2\right)}{m}\\x_1x_2=\frac{m-3}{m}\end{matrix}\right.\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\frac{4\left(m-2\right)^2}{m^2}-\frac{2\left(m-3\right)}{m}=\frac{4m^2-8m+4}{m^2}-\frac{2m-6}{m}\)

\(=4-\frac{8}{m}+\frac{4}{m^2}-2+\frac{6}{m}=\frac{4}{m^2}-\frac{2}{m}+2\)

\(=4\left(\frac{1}{m}-\frac{1}{4}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

\(A_{min}=\frac{7}{4}\) khi \(\frac{1}{m}=\frac{1}{4}\Leftrightarrow m=4\)

NV
3 tháng 5 2020

Với \(m\ne0\) có: \(\Delta'=\left(m-2\right)^2-m\left(m-3\right)=4-m\ge0\Rightarrow m\le4\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-2\left(m-2\right)}{m}=-2\left(1-\frac{2}{m}\right)\\x_1x_2=\frac{m-3}{m}=1-\frac{3}{m}\end{matrix}\right.\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=4\left(1-\frac{2}{m}\right)^2-2\left(1-\frac{3}{m}\right)=4\left(\frac{4}{m^2}-\frac{4}{m}+1\right)-2+\frac{6}{m}\)

\(=\frac{16}{m^2}-\frac{10}{m}+2=16\left(\frac{1}{m}-\frac{5}{16}\right)^2+\frac{7}{16}\ge\frac{7}{16}\)

\(A_{min}=\frac{7}{16}\) khi \(\frac{1}{m}=\frac{5}{16}\Leftrightarrow m=\frac{16}{5}< 4\left(t/m\right)\)