Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(H=2x^2-x+4==2\left(x^2-\frac{1}{2}x+2\right)\)
\(=2\left[x^2-2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{31}{8}\)
\(=2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\)
Vì \(\left(x-\frac{1}{4}\right)^2\ge0\forall x\)
=> \(2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\forall x\)
Dấu " = " xảy ra khi và chỉ khi \(\left(x-\frac{1}{4}\right)^2=0\Rightarrow x=\frac{1}{4}\)
Vậy \(H_{min}=\frac{31}{8}\)khi x = 1/4
2) \(I=\frac{1}{2}x^2+3x=\frac{1}{2}\left(x^2+6x\right)\)
\(=\frac{1}{2}\left(x^2+2\cdot x\cdot3+3^2\right)-\frac{9}{2}\)
\(=\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\)
Vì \(\left(x+3\right)^2\ge0\forall x\)
=> \(\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\ge-\frac{9}{2}\forall x\)
Dấu " = " xảy ra khi và chỉ khi (x + 3)2 = 0 => x = -3
Vậy \(I_{min}=-\frac{9}{2}\)khi x = -3
1) \(H=2x^2-x+4=2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{31}{8}=2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(2\left(x-\frac{1}{4}\right)^2\ge0\Rightarrow x=\frac{1}{4}\)
Vậy Min(H) = 31/8 khi x = 1/4
2) \(I=\frac{1}{2}x^2+3x=\frac{1}{2}\left(x^2+6x+9\right)-\frac{9}{2}=\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\ge-\frac{9}{2}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\frac{1}{2}\left(x+3\right)^2=0\Rightarrow x=-3\)
Vậy Min(I) = -9/2 khi x = -3
\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)
\(\Leftrightarrow Px^2-2P=2x-1\)
\(\Leftrightarrow Px^2-2x-2P+1=0\)
*Nếu P = 0 thì ....
*Nếu P khác 0 thì pt trên là bậc 2
\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)
Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)
Nên Pmin = -1
Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn
P(x^2+x+1)=x^2-x+1
=>Px^2+Px+P-x^2+x-1=0
=>(Px^2-x^2)+(Px+x)+(P-1)=0
=>x^2(P-1)+x(P+1)+(P-1)=0 (1)
coi đây là 1 pt bậc 2 ẩn x ,để P tổn tại max min thì phải có x thoả mãn max,min đó,tức là (1) có nghiệm
Xét delta = (P+1)^2-4(P-1)^2 >/ 0 =>P^2+2P+1-4(P^2-2P+1)=P^2+2P+1-4P^2+8P-4=-3P^2+10P-3
=(P-3)(1-3P) >/ 0 => 1/3<=P<=3 => minP=1/3,maxP=3
1.B= -(x^2 - 4x - 3)
= -(x^2 - 2x2 + 4 - 7)
= -(x - 2)^2 + 7 ≤ 7
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
=>Amax = 7 khi x=2
2. chịu tự đi mà làm ngốc thật
2.ĐK: \(x\ne-1\)
\(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2+\left(x+1\right)^2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\ge1\forall x\)
Dấu "=" xảy ra khi: \(x-1=0\Rightarrow x=1\)
Vậy GTNN của Q là 1 khi x = 1
1. \(B=4x-x^2+3=-x^2+4x-4+7=-\left(x-2\right)^2+7\le7\forall x\)
Dấu "=" xảy ra khi \(x-2=0\Rightarrow x=2\)
Vậy GTLN của B là 7 khi x = 2
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Đặt \(t=sinx\).
Do \(x\in\left(0,\frac{\pi}{2}\right)\)nên \(t\in\left(0,1\right)\).
\(P=\frac{2}{1-t}+\frac{1}{t}\ge\frac{\left(\sqrt{2}+1\right)^2}{1-t+t}=3+2\sqrt{2}\)
Dấu \(=\)khi \(\frac{\sqrt{2}}{1-t}=\frac{1}{t}\Leftrightarrow t=\sqrt{2}-1\)
Bạn rút gọn sai rồi, mình nhìn đề bài b) cho x>2 thì là biết chắc bạn sai , mình làm lại nhé : ( ĐKXĐ : tự làm )
a) \(Q=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\left(\frac{\left(x+2\right)\left(x-2\right)+x+6-x^2}{x\left(x-2\right)}\right)\)
\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\frac{x+2}{x\left(x-2\right)}\)
\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}\cdot\frac{x\left(x-2\right)}{x+2}=\frac{x^2}{x-2}\)
Vậy \(Q=\frac{x^2}{x-2}\)
b) Ta có : \(Q=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)
Do \(x>2\Rightarrow x-2>0\) và \(\frac{4}{x-2}>0\)do đó áp dụng BĐT Cô si cho 2 số dương ta được :
\(x-2+\frac{4}{x-2}\ge2\sqrt{\left(x-2\right).\left(\frac{4}{x-2}\right)}=2\cdot\frac{1}{2}=1\)
\(\Rightarrow Q\ge1+4=5\)
Vậy : GTNN của \(Q=5\)
P/s : Ai vào kiểm tra hộ cái :)) Sợ sai lắm nhé, cảm ơn nha 33
Nếu chưa học Cô si thì chứng minh rồi dùng thôi :
Bài này sử dụng Cô - si hai số nên cần chứng minh BĐT :
\(a+b\ge2\sqrt{ab}\left(a,b>0\right)\)
Thật vậy : \(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
Do đó \(a+b\ge2\sqrt{ab}\) với a,b >0
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
\(D=\frac{x^{2}-2x+2018}{x^{2}}\)
\(D=\frac{x^{2}-2*x*1+1+2017}{x^{2}}\)
\(D= \frac{(x-1)^{2}+2017}{x^{2}}\)
Nhận xét: Để D Đặt GTNN thì \((x-1)^{2} + 2017\) Đạt GTNN
Mà \((x-1)^{2} \geq 0\) . Nên:
\((x-1)^{2}+2017\)\(\geq 2017\). GTNN của \((x-1)^{2}+2017=2017 \) Khi x-1=0 => x=1
Thay x=1 vào D
GTNN D=2017
x^2/1+x^4 bé nhất khi 1 + x^4 bé nhất => x^4-0 => x^4 + 1 = 1=> x=0
Thay x=0 vào x^2/ 1+ x^4 có 0^2/ 1+0^4= 0
Vậy giá trị nhỏ nhất của x^2/ 1+ x^4 là 0 tại x=0