K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2017

Ta có \(C=x^2+2y^2-2xy-4y+5=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-y\right)^2+\left(y-2\right)^2+1\)

Do \(\left(x-y\right)^2\ge0;\left(y-2\right)^2\ge0\Rightarrow C\ge1\)

Vậy GTNN của C là 1 khi \(\hept{\begin{cases}x-y=0\\y-2=0\end{cases}}\Leftrightarrow x=y=2\)

7 tháng 8 2017

\(Q=x^2+2y^2-2xy-4y+2017\)

\(Q=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2013\)

\(Q=\left(x-y\right)^2+\left(y-2\right)^2+2013\ge2013\)

Vậy GTNN của Q=2013 <=> \(\orbr{\begin{cases}x-y=0\\y-2=0\end{cases}}\)<=>\(\orbr{\begin{cases}\\\end{cases}}x=y=2\)

7 tháng 8 2017

2) a) \(P=3x^2+y^2-8x+2xy+16\)

\(P=\left(x^2+2xy+y^2\right)+2\left(x^2-4x+4\right)+8\)

\(P=\left(x+y\right)^2+2\left(x-2\right)^2+8\ge8\forall x;y\)

\(\Rightarrow\) GTNN của P là 8 khi \(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-x\\x=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\) vậy GTNN của P là 8 khi \(x=2;y=-2\)

b) \(Q=x^2+2y^2-2xy-4y+2017\)

\(Q=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2013\)

\(Q=\left(x-y\right)^2+\left(y-2\right)^2+2013\ge2013\forall x;y\)

\(\Rightarrow\) GTNN của Q là 2013 khi \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=2\end{matrix}\right.\) vậy GTNN của Q là 2013 khi \(x=y=2\)

c) \(M=2x^2+y^2-2xy-2x+2016\)

\(M=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2015\)

\(M=\left(x-y\right)^2+\left(x-1\right)^2+2015\ge2015\forall x;y\)

\(\Rightarrow\) GTNN của M là 2015 khi \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) vậy GTNN của M là 2015 khi \(x=y=1\)

7 tháng 8 2017

thanks bạn

8 tháng 12 2016

\(2x^2+2y^2-2xy-6y+21\)

\(2A=4x^2+4y^2-4xy-12y+42\)

\(=4x^2-4xy+4y^2-12y+42\)

\(=4x^2-4xy+y^2+3y^2-12y+42\)

\(=\left(4x^2-4xy+y^2\right)+\left(3y^2-12y+42\right)\)

\(=\left(2x-y\right)^2+3\left(y^2-4x+4\right)+30\)

\(=\left(2x-y\right)^2+3\left(y-2\right)^2+30\ge30\)

Vậy GTNN là 30

8 tháng 12 2016

Cho mk sủa lại tí :

\(2A=4x^2+4y^2-4xy-12y+42\)

\(=4x^2-4xy+4y^2-12+42\)

\(=4x^2-4xy+y^2+3y^2-12y+42\)

\(=\left(2x-y\right)^2+3\left(y-2\right)^2+30\ge30\)

\(\Rightarrow2A\ge30\Rightarrow A\ge15\Rightarrow\)GTNN là 15

20 tháng 5 2021

P = x3 - 2x2y - 3x2 - 2xy + 4y2 + 3x - 5

= (x3 - 2x2y - 3x2) - (2xy - 4y2 - 6y) + (3x - 6y - 9) + 4

= x2(x - 2y - 3) - 2y(x - 2y - 3) + 3(x - 2y-  3) + 4

= (x - 2y - 3)(x2 - 2y + 3) + 4 

= 4 (Vì x - 2y - 3 = 0)

20 tháng 5 2018

Xin lỗi bạn Cool chỉ biết làm cách vắn tắt thôi nếu vắn tắt quá thì cho Cool xin lỗi vì Cool không giỏi dạng này 

A=[(X\(^2\) -2XY+Y\(^2\) )+2(X-Y)+1]+(Y\(^2\) -8Y+16)]

(X-Y+1)\(^2\)+(Y-4)\(^2\)

\(\Rightarrow=0\)

=>Amin=0 khi y=4;x=3

20 tháng 5 2018

Đặt  \(KK=x^2-2xy+2y^2+2x-10y+17\)

\(KK=\left(x^2-2xy+y^2\right)+y^2+2x-10y+17\)

\(KK=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y^2-8y+16\right)\)

\(KK=\left(x-y+1\right)^2+\left(y-4\right)^2\)

Mà  \(\left(x-y+1\right)^2\ge0\)

       \(\left(y-4\right)^2\ge0\)

\(\Rightarrow KK\ge0\)

Dấu " = " xảy ra khi : 

\(\hept{\begin{cases}x-y+1=0\\y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

Vậy  \(KK_{Min}=0\Leftrightarrow\left(x;y\right)=\left(3;4\right)\)