Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
a) \(A=\left|x+2\right|+\left|x-3\right|\)
\(A=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)
\(\Rightarrow A\ge5\)
Dấu bằng xảy ra
\(\Leftrightarrow\left(x+2\right)\left(3-x\right)\ge0\)
\(\Leftrightarrow-2\le x\le3\)
Vậy .............................
\(a,x+y=54\)
Ap dụng tính chất DTSBN ta có
\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{54}{9}=6\)
\(\hept{\begin{cases}\frac{x}{4}=6\\\frac{y}{5}=6\end{cases}\Rightarrow\hept{\begin{cases}x=24\\y=30\end{cases}}}\)
\(b,3x-2y=8\)
Ta có
\(\frac{x}{4}=\frac{y}{5}\Rightarrow\frac{3x}{12}=\frac{2y}{10}\)
Aps dụng tính chất DTSBN ta có
\(\frac{3x}{12}=\frac{2y}{10}=\frac{3x-2y}{12-10}=\frac{8}{2}=4\)
\(\hept{\begin{cases}\frac{x}{4}=4\\\frac{y}{5}=4\end{cases}\Rightarrow\hept{\begin{cases}x=16\\y=20\end{cases}}}\)
\(c,x\cdot y=80\)
Đặt \(\frac{x}{4}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=4k\\y=5k\end{cases}}\)
Ta có
\(x\cdot y=4k\cdot5k=80\)
\(\Rightarrow20k^2=80\)
\(\Rightarrow k^2=80:20=4\)
\(\Rightarrow k=\pm2\)
Với \(k=2\Rightarrow\hept{\begin{cases}x=4\cdot2\\y=5\cdot2\end{cases}\Rightarrow\hept{\begin{cases}x=8\\y=10\end{cases}}}\)
Với \(k=-2\Rightarrow\hept{\begin{cases}x=-2\cdot4\\y=-2\cdot5\end{cases}\Rightarrow\hept{\begin{cases}x=-8\\y=-10\end{cases}}}\)