K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

mày thích chết không

27 tháng 10 2017

SAO CHỬI MÌNH ?

3 tháng 6 2019

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath

eM THAM khảo nhé!

2 tháng 8 2018

a) Vì : \(\left(x+1\right)^2\ge0\forall x\)

             \(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)

Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)

29 tháng 1 2019

b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy....

15 tháng 5 2016

a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)

=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)

Dấu "=" xảy ra khi x=-2;y=1/5

Vậy GTNN của C là -10 tại x=-2;y=1/5

15 tháng 5 2016

b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)

Dấu "=" xảy ra khi: x=3/2

Vậy GTLN của D là : 4/5 tại x=3/2

24 tháng 7 2017

a ) \(A=\left|x+1\right|+24\)

Ta có : \(\left|x+1\right|\ge0\)

\(\Leftrightarrow\left|x+1\right|+24\ge24\)

Vậy \(Min_A=24\Leftrightarrow x=-1.\)

\(B=1,25+\left|3,5-x\right|\)

Ta có : \(\left|3,5-x\right|\ge0\)

\(1,25+\left|3,5-x\right|\ge1,25\)

Vậy \(Min_B=1,25\Leftrightarrow x=3,5.\)

b ) \(A=-\left|x-1\right|+24\)

Ta có : \(-\left|x-1\right|\le0\)

\(\Leftrightarrow-\left|x-1\right|+24\le24\)

Vậy \(Max_A=24\Leftrightarrow x=1.\)

\(B=1,25-\left|5-x\right|\)

Ta có : \(-\left|5-x\right|\le0\)

\(\Leftrightarrow1,25-\left|5-x\right|\le1,25\)

Vậy \(Max_B\Leftrightarrow x=5.\)

24 tháng 7 2017

Bài 5:

Mỗi câu làm 1 ý nhá!

a, Với mọi giá trị của \(x\in R\) ta có:

\(\left|x+1\right|+24\ge24\)

hay \(A\ge24\) với mọi giá trị của \(x\in R\).

Để \(A=24\) thì \(\left|x+1\right|+24=24\)

\(\Rightarrow\left|x+1\right|=0\Rightarrow x=-1\)

Vậy..............

b,

Với mọi giá trị của \(x\in R\) ta có:

\(-\left|x-1\right|\le0\Rightarrow-\left|x-1\right|+24\le24\)

hay \(A\le24\) với mọi giá trị của \(x\in R\).

Để \(A=24\) thì \(-\left|x-1\right|+24=24\)

\(\Rightarrow-\left|x-1\right|=0\Rightarrow x=1\)

Vậy..............

Chúc bạn học tốt!!!

5 tháng 4 2017

a. (x+2)2 >= 0

(y-1/5)2 >= 0

=> MinC = -10 khi x = -2, y = 1/5

b. (2x-3)2 + 5 >= 5

D đạt max khi mẫu đạt min (Mẫu > 0)

=> MaxD = 4/5 khi x = 3/2

30 tháng 3 2018

Ta có : 

\(A=\left|x-2\right|+\left|x+\frac{1}{2}\right|=\left|x-2\right|+\left|x-\frac{-1}{2}\right|=\left|x-2\right|+\left|\frac{-1}{2}-x\right|\)

Áp dụng bất đẳng thức giá trị tuyệt đối ta có : 

\(A=\left|x-2\right|+\left|\frac{-1}{2}-x\right|\ge\left|x-2+\frac{-1}{2}-x\right|=\left|-2-\frac{1}{2}\right|=\left|\frac{-3}{2}\right|=\frac{3}{2}\)

Dấu "=" xảy ra khi \(\left(x-2\right)\left(\frac{-1}{2}-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-2\ge0\\\frac{-1}{2}-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\le\frac{-1}{2}\end{cases}}}\)

\(\Rightarrow\)\(x\in\left\{\varnothing\right\}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-2\le0\\\frac{-1}{2}-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge\frac{-1}{2}\end{cases}}}\)

\(\Rightarrow\)\(\frac{-1}{2}\le x\le2\)

Vậy \(A_{min}=\frac{3}{2}\) khi \(\frac{-1}{2}\le x\le2\)

Chúc bạn học tốt ~