K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

Câu a sai đề nên mik sửa lại nha

a) \(A=2019-\left(3x+8\right)^2\)

Ta có : \(\left(3x+8\right)^2\ge0=>2019-\left(3x+8\right)^2\le2019\)

Dấu '=' xảy ra khi và chỉ khi \(3x+8=0=>x=-\frac{8}{3}\)

Vậy \(A_{max}=2019\)khi \(x=-\frac{8}{3}\)

b) ta có : \(\left(x+2\right)^2\ge0 vs \left(2x-y\right)^2\ge0=>12-\left(x+2\right)^2+\left(2x-y\right)^2\le12\)

Dấu '=' xảy ra khi \(x+2=2x-y=0=>x=-2 , y=-4\)

Vậy ... 

b) \(\left(6x-1\right)^2\ge0=>\left(6x-1\right)^2+2018\ge2018\)

Dấu "=" xảy ra khi \(6x-1=0=>x=\frac{1}{6}\)

Vậy ...

\(\left|2x+1\right|\ge0=>15+\left|2x+1\right|\ge15\)

Dấu "=" xảy ra  khi \(2x+1=15=>x=7\)

Vậy ...

\(a,A=2019-\left(3x+8\right)\)

GTLN của biểu thức là 2019 khi \(3x+8=0\Rightarrow x=-\frac{8}{3}\)

\(b,B=12-\left(x+2\right)^2+\left(2x-y\right)^2\)

GTLN của biểu thức là 12 khi \(\orbr{\begin{cases}x+2=0\\2x-y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\2.\left(-2\right)-y=0\end{cases}\Rightarrow}x=-2;y=-4}\)

\(a,A=\left(6x-1\right)^2+2018\ge2018\)

Dấu bằng xảy ra khi \(6x-1=0\Rightarrow x=\frac{1}{6}\)

Vậy GTNN của A là 2018 khi x = 1/6

B ko hiểu 

Y
16 tháng 4 2019

\(H=2019-\left(\left|x-y\right|^{2018}+\left|2x+1\right|+\left|4x+2\right|\right)\)

+ \(\left\{{}\begin{matrix}\left|x-y\right|^{2018}\ge0\forall x,y\\\left|2x+1\right|\ge0\forall x\\\left|4x+2\right|\ge0\forall x\end{matrix}\right.\)

\(\Rightarrow\left|x-y\right|^{2018}+\left|2x+1\right|+\left|4x+2\right|\ge0\forall x,y\)

\(\Rightarrow H\le2019\forall x,y\)

+ H = 2019 \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y\right|^{2018}=0\\\left|2x+1\right|=0\\\left|4x+2\right|=0\end{matrix}\right.\Leftrightarrow x=y=-\frac{1}{2}\)

Vậy Min H = 2019 \(\Leftrightarrow x=y=-\frac{1}{2}\)

16 tháng 4 2019

Làm sao để được \(|x-y|^{2018}=0\) và 2 phép còn lại =0 vậy ạ? Mong bạn giải thích rõ giúp mình được không?Y

21 tháng 4 2021

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

21 tháng 4 2021

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0

10 tháng 2 2019

Giá trị lớn nhất chứ bn , bn xem lại đề hộ mình

26 tháng 7 2020

a) \(M=x^2-8x+2018=x^2-8x+16+2002=\left(x-4\right)^2+2002\)

\(\left(x-4\right)^2\ge0\forall x\Rightarrow\left(x-4\right)^2+2002\ge2002\)

Dấu " = " xảy ra <=> x - 4 = 0 => x = 4

Vậy MMin = 2002 khi x = 4

b) \(N=4x^2-12x+2019=4x^2-12x+9+2010=\left(2x-3\right)^2+2010\)

\(\left(2x-3\right)^2\ge0\forall x\Rightarrow\left(2x-3\right)^2+2010\ge2010\)

Dấu " = " xảy ra <=> 2x - 3 = 0 => x = 3/2

Vậy NMin = 2010 khi x = 3/2

c) \(P=x^2-x+2016=x^2-x+\frac{1}{4}+\frac{8063}{4}=\left(x-\frac{1}{2}\right)^2+\frac{8063}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{8063}{4}\ge\frac{8063}{4}\)

Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2

Vậy PMin = 8063/4 khi x = 1/2

d) \(Q=x^2-2x+y^2+4y+2020\)

\(Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2015\)

\(Q=\left(x-1\right)^2+\left(y+2\right)^2+2015\)

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+2015\ge2015\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy QMin = 2015 khi x = 1 ; y = -2 

25 tháng 8 2020

F = | 2x - 2 | + | 2x - 2003 |

F = | 2x - 2 | + | -( 2x - 2003 ) |

F = | 2x - 2 | + | 2003 - 2x |

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

F = | 2x - 2 | + | 2003 - 2x | ≥ | 2x - 2 + 2003 - 2x | = | 2001 | = 2001

Đẳng thức xảy ra khi ab ≥ 0

=> ( 2x - 2 )( 2003 - 2x ) ≥ 0

Xét hai trường hợp :

1/ \(\hept{\begin{cases}2x-2\ge0\\2003-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge2\\-2x\ge-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2003}{2}\end{cases}\Rightarrow}1\le x\le\frac{2003}{2}\)

2/ \(\hept{\begin{cases}2x-2\le0\\2003-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}2x\le2\\-2x\le-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{2003}{2}\end{cases}}\)( loại )

Vậy MinF = 2001 <=> \(1\le x\le\frac{2003}{2}\)

G = | 2x - 3 | + 1/2| 4x - 1 |

G = | 2x - 3 | + | 2x - 1/2 |

G = | -( 2x - 3 ) | + | 2x - 1/2 |

G = | 3 - 2x | + | 2x - 1/2 |

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

G = | 3 - 2x | + | 2x - 1/2 | ≥ | 3 - 2x + 2x - 1/2 | = | 5/2 | = 5/2

Đẳng thức xảy ra khi ab ≥ 0 

=> ( 3 - 2x )( 2x - 1/2 ) ≥ 0

Xét 2 trường hợp :

1/ \(\hept{\begin{cases}3-2x\ge0\\2x-\frac{1}{2}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\le\frac{3}{2}\\x\ge\frac{1}{4}\end{cases}}\Rightarrow\frac{1}{4}\le x\le\frac{3}{2}\)

2/ \(\hept{\begin{cases}3-2x\le0\\2x-\frac{1}{2}\le0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\le-3\\2x\le\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\le\frac{1}{4}\end{cases}}\)( loại )

=> MinG = 5/2 <=> \(\frac{1}{4}\le x\le\frac{3}{2}\)

H = | x - 2018 | + | x - 2019 | + | x - 2020 | 

H = | x - 2019 | + [ | x - 2018 | + | x - 2020 | ]

H = | x - 2019 | + [ x - 2018 | + | -( x - 2020 ) | ]

H = | x - 2019 | + [ | x - 2018 | + | 2020 - x | ]

Ta có : | x - 2019 | ≥ 0 ∀ x

| x - 2018 | + | 2020 - x | ≥ | x - 2018 + 2020 - x | = | 2 | = 2 ( BĐT | a | + | b | ≥ | a + b | )

=> | x - 2019 | + [ | x - 2018 | + | 2020 - x | ] ≥ 2

Đẳng thức xảy ra <=> \(\hept{\begin{cases}\left|x-2019\right|=0\\\left(x-2018\right)\left(2020-x\right)\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2019\\2018\le x\le2020\end{cases}}\)

=> x = 2019

=> MinH = 2 <=> x = 2019

5 tháng 10 2018

a) \(\left(x-2\right)^2+2019\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+2019\ge2019\forall x\)

Dấu '=' xảy ra khi

\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-2\right)^2+2019\) là 2019 khi x=2

b) \(\left(x-3\right)^2+\left(y-2\right)^2-2018\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\left(y-2\right)^2\ge0\forall y\)

Do đó: \(\left(x-3\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-3\right)^2+\left(y-2\right)^2-2018\ge-2018\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-3\right)^2+\left(y-2\right)^2-2018\) là -2018 khi x=3 và y=2

c) \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\)

Ta có: \(\left(3-x\right)^{100}\ge0\forall x\)

\(\Rightarrow-\left(3-x\right)^{100}\le0\forall x\)

Ta có: \(\left(y+2\right)^{200}\ge0\forall y\)

\(\Rightarrow-3\cdot\left(y+2\right)^{200}\le0\forall y\)

Do đó: \(-\left(3-x\right)^{100}-3\left(y+2\right)^{200}\le0\forall x,y\)

\(\Rightarrow-\left(3-x\right)^{100}-3\left(y+2\right)^{200}+2020\le2020\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(3-x\right)^{100}=0\\\left(y+2\right)^{200}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3-x=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\) là 2020 khi x=3 và y=-2

d) \(-\left|x-1\right|-2\left(2y-1\right)^2+100\)

Ta có: \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow-\left|x-1\right|\le0\forall x\)

Ta có: \(\left(2y-1\right)^2\ge0\forall y\)

\(\Rightarrow-2\left(2y-1\right)^2\le0\forall y\)

Do đó: \(-\left|x-1\right|-2\left(2y-1\right)^2\le0\forall x,y\)

\(\Rightarrow-\left|x-1\right|-2\left(2y-1\right)^2+100\le100\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left|x-1\right|=0\\\left(2y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(-\left|x-1\right|-2\left(2y-1\right)^2+100\) là 100 khi x=1 và \(y=\frac{1}{2}\)