K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2020

a) Ta có \(\left|x-4\right|\ge0\forall x\Rightarrow A=7+\left|x-4\right|\ge7\forall x\)

Dấu "=" xảy ra <=> x - 4 = 0

=> x = 4

Vậy Min A = 7 <=> x = 4

b) Ta có : \(\left|2-3x\right|\ge0\forall x\Rightarrow B=\left|2-3x\right|-\frac{1}{5}\ge-\frac{1}{5}\forall x\)

Dấu "=" xảy ra <=> 2 - 3x = 0

=> 3x = 2

=> x = 2/3

Vậy Min B = -1/5 <=> x = 2/3

c) Ta có \(\left|\frac{1}{2}-5x\right|\ge0\forall x\Rightarrow C=7-\left|\frac{1}{2}-5x\right|\le7\forall x\)

Dấu "=" xảy ra <=> 1/2 - 5x = 0

=> x = 1/10 

Vậy Max C = 7 <=> x = 1/10

2 tháng 8 2018

a) Vì : \(\left(x+1\right)^2\ge0\forall x\)

             \(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)

Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)

29 tháng 1 2019

b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy....

3 tháng 6 2019

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath

eM THAM khảo nhé!

15 tháng 5 2016

a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)

=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)

Dấu "=" xảy ra khi x=-2;y=1/5

Vậy GTNN của C là -10 tại x=-2;y=1/5

15 tháng 5 2016

b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)

Dấu "=" xảy ra khi: x=3/2

Vậy GTLN của D là : 4/5 tại x=3/2

28 tháng 9 2016

a) Ta có: \(\left|2x-\frac{1}{3}\right|\ge0\)

\(\Rightarrow A=\left|2x-\frac{1}{3}\right|+107\ge107\)

\(\Rightarrow\)Dấu " =" xảy ra khi \(\left|2x-\frac{1}{3}\right|=0\)

                       \(\Rightarrow2x-\frac{1}{3}=0\)

                        \(\Rightarrow2x=\frac{1}{3}\)

                          \(\Rightarrow x=\frac{1}{6}\)

Vậy A đạt GTNN = 107 khi x = \(\frac{1}{6}\)

b) Ta có: \(\left|x+\frac{3}{5}\right|\ge0\)

\(\Rightarrow B=\left|x+\frac{3}{5}\right|-\frac{1}{2}\ge\frac{-1}{2}\)

=> Dấu" = " xảy ra khi \(\left|x+\frac{3}{5}\right|=0\)

                     \(\Rightarrow x+\frac{3}{5}=0\)

                     \(\Rightarrow x=\frac{-3}{5}\)

Vậy B đạt GTNN = \(\frac{-1}{2}\) Khi x = \(\frac{-3}{5}\)

5 tháng 4 2017

a. (x+2)2 >= 0

(y-1/5)2 >= 0

=> MinC = -10 khi x = -2, y = 1/5

b. (2x-3)2 + 5 >= 5

D đạt max khi mẫu đạt min (Mẫu > 0)

=> MaxD = 4/5 khi x = 3/2