Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=x^2+2y^2-2xy-8y+2018\)
\(=\left(x+y\right)^2+\left(y-4\right)^2+2002\ge2002\forall x;y\)
Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\y=4\end{cases}}}\)
\(\Rightarrow x=-4\)
Vậy minP=2002 tại x=-4;y=4
a) \(P=x^2+2y^2-2xy-8y+2018\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2-8y+16\right)+2012\)
\(=\left(x-y\right)^2+\left(y-4\right)^2+2012\)
Vì\(\hept{\begin{cases}\left(x-y\right)^2\ge0;\forall x,y\\\left(y-4\right)^2\ge0;\forall x,y\end{cases}}\)
\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2+2012\ge0+2012;\forall x,y\)
Hay \(P\ge2012;\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\)
\(\Leftrightarrow x=y=4\)
Vậy MIN P=2012 \(\Leftrightarrow x=y=4\)
\(A=4x^2-6x\left(x-y\right)+3y^2-12y+20\)
\(A=\left(2x\right)^2-2.2x.\frac{3}{2}y+\left(\frac{3}{2}y\right)^2-\frac{9}{4}y^2+3y^2-12y+20\)
\(A=\left(2x-\frac{3}{4}y\right)^2+\frac{3}{4}y^2-12y+432-432+20\)
\(A=\left(2x-\frac{3}{4}y\right)^2+3\left(\frac{1}{4}y^2-2.\frac{1}{2}.12+12^2\right)-432+20\)
\(\Rightarrow A=\left(2x-\frac{3}{4}y\right)^2+3\left(\frac{1}{2}y-12\right)^2-412\)
Ta có:\(\hept{\begin{cases}\left(2x-\frac{3}{4}y\right)^2\ge0\\\left(\frac{1}{2}y-12\right)^2\ge0\Rightarrow3\left(\frac{1}{2}y-12\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(2x-\frac{3}{4}y\right)^2+3\left(\frac{1}{2}y-12\right)^2-412\ge-412\)
\(\Rightarrow A_{min}=-412\)đạt được khi
i\(\hept{\begin{cases}\left(2x-\frac{3}{4}y\right)^2=0\\\left(\frac{1}{2}y-12\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-\frac{3}{4}y=0\\\frac{1}{2}y-12=0\end{cases}\Leftrightarrow}\hept{\begin{cases}2x=\frac{3}{4}y\\\frac{1}{2}y=12\end{cases}\Leftrightarrow}\hept{\begin{cases}x=9\\y=24\end{cases}}}\)