Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\left|x-3\right|+2\right)^2\ge0\forall x\) không âm
\(\left|y+3\right|\ge3\forall y\) không âm
Cộng theo vế 2 BĐT trên ta có:
\(A=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018\ge0+3+2018=2021\)
Vậy \(A_{min}=2021\Leftrightarrow\hept{\begin{cases}\left(\left|x-3\right|+2\right)^2=0\\\left|y+3\right|=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}}\)
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
Ta có :
\(\left(x+y-3\right)^4\ge0\) \(\left(\forall x,y\inℚ\right)\)
\(\left(x-2y\right)^2\ge0\) \(\left(\forall x,y\inℚ\right)\)
\(\Rightarrow\)\(\left(x+y-3\right)^4+\left(x-2y\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-3\right)^4=0\\\left(x-2y\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y-3=0\\x-2y=0\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+y=3\\x+y-3y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=3\\x+y=3y\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=3-y\\3=3y\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-y\\y=1\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=3-1\\y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)
Vậy \(A_{min}=2018\) khi \(x=2\) và \(y=1\)
Chúc bạn học tốt ~
Ta có \(\left(x+y-3\right)^4\ge0\) với mọi giá trị của x
\(\left(x-2y\right)^2\ge0\)với mọi giá trị của x
=> \(\left(x+y-3\right)^4+\left(x-2y\right)^2\ge0\)với mọi giá trị của x
=> \(\left(x+y-3\right)^4+\left(x-2y\right)^2+2018\ge2018\)với mọi gt của x
=> GTNN của A là 2018.
F = | 2x - 2 | + | 2x - 2003 |
F = | 2x - 2 | + | -( 2x - 2003 ) |
F = | 2x - 2 | + | 2003 - 2x |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
F = | 2x - 2 | + | 2003 - 2x | ≥ | 2x - 2 + 2003 - 2x | = | 2001 | = 2001
Đẳng thức xảy ra khi ab ≥ 0
=> ( 2x - 2 )( 2003 - 2x ) ≥ 0
Xét hai trường hợp :
1/ \(\hept{\begin{cases}2x-2\ge0\\2003-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge2\\-2x\ge-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2003}{2}\end{cases}\Rightarrow}1\le x\le\frac{2003}{2}\)
2/ \(\hept{\begin{cases}2x-2\le0\\2003-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}2x\le2\\-2x\le-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{2003}{2}\end{cases}}\)( loại )
Vậy MinF = 2001 <=> \(1\le x\le\frac{2003}{2}\)
G = | 2x - 3 | + 1/2| 4x - 1 |
G = | 2x - 3 | + | 2x - 1/2 |
G = | -( 2x - 3 ) | + | 2x - 1/2 |
G = | 3 - 2x | + | 2x - 1/2 |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
G = | 3 - 2x | + | 2x - 1/2 | ≥ | 3 - 2x + 2x - 1/2 | = | 5/2 | = 5/2
Đẳng thức xảy ra khi ab ≥ 0
=> ( 3 - 2x )( 2x - 1/2 ) ≥ 0
Xét 2 trường hợp :
1/ \(\hept{\begin{cases}3-2x\ge0\\2x-\frac{1}{2}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\le\frac{3}{2}\\x\ge\frac{1}{4}\end{cases}}\Rightarrow\frac{1}{4}\le x\le\frac{3}{2}\)
2/ \(\hept{\begin{cases}3-2x\le0\\2x-\frac{1}{2}\le0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\le-3\\2x\le\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\le\frac{1}{4}\end{cases}}\)( loại )
=> MinG = 5/2 <=> \(\frac{1}{4}\le x\le\frac{3}{2}\)
H = | x - 2018 | + | x - 2019 | + | x - 2020 |
H = | x - 2019 | + [ | x - 2018 | + | x - 2020 | ]
H = | x - 2019 | + [ x - 2018 | + | -( x - 2020 ) | ]
H = | x - 2019 | + [ | x - 2018 | + | 2020 - x | ]
Ta có : | x - 2019 | ≥ 0 ∀ x
| x - 2018 | + | 2020 - x | ≥ | x - 2018 + 2020 - x | = | 2 | = 2 ( BĐT | a | + | b | ≥ | a + b | )
=> | x - 2019 | + [ | x - 2018 | + | 2020 - x | ] ≥ 2
Đẳng thức xảy ra <=> \(\hept{\begin{cases}\left|x-2019\right|=0\\\left(x-2018\right)\left(2020-x\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2019\\2018\le x\le2020\end{cases}}\)
=> x = 2019
=> MinH = 2 <=> x = 2019
\(2018^0à?\)
\(A=3\left(x-4\right)^{2018}+\left|3y+5\right|+1\)
Do \(3\left(x-4\right)^{2018}\ge0;\left|3y+5\right|\ge0\forall x,y\)
Nên \(A=3\left(x-4\right)^{2018}+\left|3y+5\right|+1\ge1với\forall x,y\)
Dấu = xảy ra khi \(\hept{\begin{cases}x-4=0\\3y+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\frac{5}{3}\end{cases}}}\)
\(\left|x-3\right|+2>=2\)
=>(|x-3|+2)^2>=4
\(A=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018>=4+2018=2022\)
Dấu = xảy ra khi x-3=0 và y+3=0
=>x=3 và y=-3