K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

Vì \(3< x< 5\)

\(\Rightarrow x=4\)

Ta có : \(C=x^2-2x-5\)

\(=x^2-2x.1+1^2-1^2-5\)

\(=x^2-2x.1+1-1-5\)

\(=\left(x^2-2x.1+1\right)-1-5\)

\(=\left(x-1\right)^2-6\)

\(\Leftrightarrow\left(x-1\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2-6\ge6\)

Vậy C đạt GTNN <=> x=1

Ta có : \(\frac{2}{x}=1+\left(\frac{\left(2-x\right)}{x}\right)\)

Nếu \(0< x< 2\)

Áp dụng BĐT cô si ta có :

\(B=\left[\frac{9x}{\left(2-x\right)}\right]+\frac{2}{x}\)

\(=\left[\frac{9x}{\left(2-x\right)}\right]+\frac{\left(2-x\right)}{x+1}\ge2\sqrt{9}+1=7\)

\(\Rightarrow GTNN=7\)

Dấu ''='' xảy ra khi \(\frac{9x}{\left(2-x\right)}=\frac{\left(2-x\right)}{x}\Leftrightarrow x=\frac{1}{2}\)

Vậy \(Bmin=7\)khi \(x=\frac{1}{2}\)

12 tháng 4 2017

Bài 1: \(A=x^2-2x+3\)

\(=x^2-2x+1+2\)

\(=\left(x-1\right)^2+2\ge2\forall x\)

Đẳng thức xảy ra khi \(\left(x-1\right)^2=0\Rightarrow x=1\)

Bài 2:

\(2x^2+4x+11=2x^2+4x+2+9\)

\(=2\left(x^2+2x+1\right)+9\)

\(=2\left(x+1\right)^2+9\ge9>0\forall x\)

10 tháng 9 2015

Bài 1

(2x + 9)2 > 0

3(2x + 9)2 > 0

3(2x + 9)2 - 1 > - 1

Vậy GTNN của biểu thức là - 1

Bài 2

(x - a)(x + a) = x2 - 169

x2 - a2 = x2 - 169

a2 = 169

mà a < 0

nên a = - 13