Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+9y^2-6xy-6x-12y+2018\)
\(2A=4x^2+18y^2-12xy-12x-24y+4036\)
\(2A=\left(4x^2-12xy+9y^2\right)-12x-24y+9y^2+4036\)
\(2A=\left(2x-3y\right)^2-6\left(2x-3y\right)+9+\left(9y^2-42y+49\right)+3975\)
\(2A=\left(2x-3y-3\right)^2+\left(3y-7\right)^2+3975\ge3975\)
\(\Rightarrow A\ge\frac{3975}{2}\) Dấu "=" xảy ra tại \(y=\frac{7}{3};x=5\)
Em sai từ dòng thứ 3 xuống dòng thứ 4
4036 = 9+49 + 3975 ???
Điều đó dẫn đến kết quả của em sai. Kiểm tra lại nhé Khải!
A = -x2 + 2xy - 4y2 + 2x + 10y - 8
=> -A = x2 - 2xy + 4y2 - 2x - 10y + 8
= ( x2 - 2xy + y2 - 2x + 2y + 1 ) + ( 3y2 - 12y + 12 ) - 5
= [ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] + 3( y2 - 4y + 4 ) - 5
= [ ( x - y )2 - 2( x - y ) + 1 ] + 3( y - 2 )2 - 5
= ( x - y - 1 )2 + 3( y - 2 )2 - 5 ≥ -5 ∀ x, y
Dấu "=" xảy ra <=> x = 3 ; y = 2
=> -A ≥ -5
=> A ≤ 5
=> MaxA = 5 <=> x = 3 ; y = 2
B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004
= ( x2 - 6xy + 9y2 + 4x - 12y + 4 ) + ( x2 - 10x + 25 ) + 1975
= [ ( x2 - 6xy + 9y2 ) + ( 4x - 12y ) + 4 ] + ( x - 5 )2 + 1975
= [ ( x - 3y )2 + 2( x - 3y ).2 + 22 ] + ( x - 5 )2 + 1975
= ( x - 3y + 2 )2 + ( x - 5 )2 + 1975 ≥ 1975 ∀ x, y
Dấu "=" xảy ra <=> x = 5 ; y = 7/3
=> MinB = 1975 <=> x = 5 ; y = 7/3
Ta có: A = -x2 + 2xy - 4y2 + 2x + 10y - 8
A = -[x2 - 2xy + 4y2 - 2x - 10y + 8]
A = -[(x2 - 2xy + y2) - 2(x + y) + 1 + 3y2 - 12y + 12 - 5]
A = -[(x - y)2 - 2(x + y) + 1 + 3(y - 2)2]+ 5
A = -[(x - y - 1)2 + 3(y - 2)2] + 5 \(\le\) 5 với mọi x
Dấu "=" xảy ra <=> x - y - 1 = 0 và y + 2 = 0
=>x = -1 và y = -2
Vậy MaxA = 5 khi x = -1 và y = -2
B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004
B = (x2 - 6xy + 9y2) + 4(x - 3y) + 4 + x2 - 10x + 25 + 1975
B = (x - 3y + 2)2 + (x - 5)2 + 1975 \(\ge\)1975
đoạn cuối tt trên
\(M=2x^2+9y^2-6xy-6x-12y+2028\\ =3\left(x^2-2xy+y^2\right)-\left(x^2+6x+9\right)+6\left(y^2-2y+1\right)+2025\\ =\left(x-y\right)^2-\left(x-3\right)^2+6\left(y-1\right)^2+2025\ge2025\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=1\end{matrix}\right.\) (vô lí) nên dấu \("="\) ko thể xảy ra
\(N=x^2-4xy+5y^2+10x-22y+28\\ =\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\\=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
A=2x2 + 9y2 - 6xy - 6x -12y + 2015
=(x2-6xy + 9y2)+(4x - 12y) + x2 - 10x +2015
=(x - 3y)2+ 4(x - 3y) + 4 + (x2 - 10x +25)+ 1986
=(x- 3y - 2)2+(x - 5)2 +1986
ta có (x-3y-2)2 > hoặc = 0; (x-5)2>hoặc =0(với mọi giá trị x,y)
=> (x- 3y -2)2+ (x-5)2 > hoặc = 0(với mọi giá trị x,y)
=>(x - 3y -2)2 + (x - 5)2+1986 > hoặc = 1986
=> A đạt GTNN là 1986 khi:
(x-3y-2)2 + (x - 5)2 +1986 = 1986
<=>(x-3y-2)2 + (x - 5)2= 0
<=>x-5 =0 <=> x=5
và x- 3y -2=0 hay 5 - 3y -2=0 <=>-3y= - 3 <=> y=1
Vậy GTNN của A là 1986 khi x= 5 và y=1
( BAÌ NÀY CÓ GÌ KHÔNG HIỂU CỨ HỎI NHA ! )
Ta có:
\(2x^2+9y^2-6xy-12y+1974\)
\(=x^2+9y^2+4-6xy-12y+4x+x^2-10x+25+1945\)
\(=\left(x^2+9y^2+4-6xy-12y+4x\right)+\left(x^2-10x+25\right)+1945\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1945\ge1945\)
Dấu "=" xảy ra khi \(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-3y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}}\)
Vậy \(MIN\) của biểu thức là \(1945\) tại \(\hept{\begin{cases}x=5\\x=\frac{7}{3}\end{cases}}\)
\(A=2x^2+9y^2-6xy-6x-12y+2015\)
\(A=\left(x^2-6xy+9y^2\right)+x^2-6x-12y+2015\)
\(A=\left(x-3y\right)^2+4.\left(x-3y\right)-10x+x^2+2015\)
\(A=\left(x-3y\right)^2+4.\left(x-3y\right)+4+\left(x^2-10x+25\right)+1986\)
\(A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1986\)
Vì \(\left(x-3y+2\right)^2\ge0;\left(x-5\right)^2\ge0\)
\(\Rightarrow A\ge1986\)
Dấu '=' xảy ra khi:
\(\Rightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{7}{3}\\x=5\end{cases}}}\)
Vậy Amin= 1986 khi x = 5, y = 7/3
Chúc bạn học tốt!!!
#)Giải :
Đặt \(A=2x^2+9y^2-6xy-6x-12y+1974\)
\(\Rightarrow A=x^2+9y^2+4-6xy-12y+4x+x^2-10x+25+1945\)
\(\Rightarrow A=\left(x^2+9y^2+4-6xy-12y+4x\right)+\left(x^2-10x+25\right)+1945\)
\(\Rightarrow A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1945\ge1945\)
Dâu ''='' xảy ra khi \(\hept{\begin{cases}x-5=0\\x-3y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}}\)
Vậy GTNN của A = 1945 tại x = 5 và y = 7/3