K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017
GTNN của A=1 <=>2< hoặc =x < hoặc =3
24 tháng 12 2017

thì A=\(\left|3-x\right|+\left|x-2\right|\ge\left|3-x+x-2\right|=1\) (bất đẳng thức về dâu giá trị tuyệt đối)

dấu = xảy ra <=> tích của chúng = nhau

20 tháng 1 2019

\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)

    \(=\left|x-2014\right|+\left|2016-x\right|+\left|x-2015\right|\)

   \(\ge\left|x-2014+2016-x\right|+\left|x-2015\right|\)

    \(=2\)

Dấu "=" xảy ra <=> x = 2015

Vậy .......

15 tháng 1 2017

|x -1| + |x-2| + |x-3| ≥ | x-1+3-x | + | x-2 |

≥ | 2 | + | x-2 |

Dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\text{≥}0\\x-2=0\end{cases}}\)

Bạn giải ra tìm x = 2 nhé 

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

\(\ge\left|x-1+2-x+x-3\right|=\left|x-2\right|\)

Xem lại đề nha bạn

20 tháng 5 2018

\(\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)

\(=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

\(\Rightarrow\text{MIN}_{-36}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

21 tháng 4 2021

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

21 tháng 4 2021

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0

22 tháng 2 2020

                                                          Bài giải

\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

\(A=\left|x-1\right|+\left|2-x\right|+\left|x-3\right|\ge\left|x-1+2-x\right|+\left|x-3\right|=\left|1\right|+\left|x-3\right|=1+\left|x-3\right|\ge1\)

Dấu " = " xảy ra khi \(1\le x\le2\)

Vậy Min A = 1 khi \(1\le x\le2\)

22 tháng 2 2020

Nhầm Min là 2 khi x = 2 nha !