Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:
\(A=\frac{3x^4+16}{x^3}=\frac{x^4+x^4+x^4+16}{x^3}\)
\(\ge\frac{4\sqrt[4]{16.x^{12}}}{x^3}=4.2=8\)
Vậy GTNN là 8 đạt được tại x = 2
Cách 2:
\(A=\frac{3x^4+16}{x^3}=8+\frac{3x^4-8x^3+16}{x^3}\)
\(=8+\frac{\left(x-2\right)^2\left(3x^2+4x+4\right)}{x^3}\ge8\)
Dấu = xảy ra khi x = 2
\(A=\frac{\left(x-9\right)+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}\)\(=\left(\sqrt{x}+3\right)+\frac{25}{\sqrt{x}+3}-6\ge2\sqrt{\left(\sqrt{x}+3\right).\frac{25}{\sqrt{x}+3}}-6=2.5-4=6\)
Dấu'=' xảy ra khi và chỉ khi \(\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\)
\(\Rightarrow\left(\sqrt{x}+3\right)^2=25\Rightarrow\sqrt{x}+3=5\left(do\sqrt{x}+3>0\right)\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
Vậy MinA=4 khi và chỉ khi x=4
điều kiện \(x\ge0\)
ta có : \(P=\dfrac{16+x}{\sqrt{x}+3}\Leftrightarrow x-P\sqrt{x}+16-3P=0\)
vì phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\)
\(\Leftrightarrow P^2-4\left(16-3P\right)\ge0\Leftrightarrow P^2+12P-64\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}P\ge4\\P\le-16\end{matrix}\right.\) không có GTNN của P
\(B=x\left(x-3\right)\left(x+1\right)\left(x+4\right)\)
\(B=\left[x\left(x+1\right)\right]\left[\left(x-3\right)\left(x+4\right)\right]\)
\(B=\left(x^2+x\right)\left(x^2+x-12\right)\)
Đặt \(x^2+x=a\)ta được;
\(B=a\left(a-12\right)=a^2-12a=\left(a^2-2.a.6+36\right)-36\)\(=\left(a-6\right)^2-36\)
Vì \(\left(a-6\right)^2\ge0\)\(\Rightarrow\left(a-6\right)^2-36\ge-36\)
Dấu ''='' xảy ra khi \(a-6=0\Rightarrow a=6\Rightarrow x^2+x-6=0\)\(\Rightarrow\left(x^2+3x\right)-\left(2x+6\right)=0\)
\(\Rightarrow x\left(x+3\right)-2\left(x+3\right)=0\)\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy GTNN của B là B=-36 khi x=-3 hoặc x=2
1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)
Đạt được khi x = 9
2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)
\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)
\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)
Không có GTLN nhé
ĐKXĐ: x ≥ 0
P nhỏ nhất khi √x + 1 nhỏ nhất
Do x ≥ 0 nên √x + 1 ≥ 1
⇒ √x + 1 nhỏ nhất là 1 khi x = 0
⇒ GTNN của P là -3/(0 + 1) = -3 khi x = 0
Ta có BĐT : \(a.b\le\left(\frac{a+b}{2}\right)^2\forall a,b\). Do đó :
\(x^3.\left(16-x^3\right)\le\left(\frac{x^3+16-x^3}{2}\right)^2=\left(\frac{16}{2}\right)^2=64\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=16-x^3\)
\(\Leftrightarrow x^3=8\Leftrightarrow x=2\)
Vậy GTLN của \(x^3\left(16-x^3\right)\) là \(64\) khi \(x=2\)