Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hiên tại mình không có laptop nên không gõ đc công thức. Các bạn thông cảm.
A=\(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+3\right)^2}\)=|x-1|+|x+3|=|1-x|+|x+3|
Áp dụng bđt |a|+|b|\(\ge\)|a+b| ta được: A=|1-x|+|x+3|\(\ge\)|1-x+x+3|=4
Dấu "=" xảy ra khi (1-x)(x+3)\(\ge\)0 <=> \(-3\le x\le1\)
Vậy Amin=4 khi \(-3\le x\le1\)
A = \(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}\)
= \(\sqrt{\left(1-x\right)^2}+\sqrt{\left(x+3\right)^2}\)
= 1 - x + x + 3
= 4
\(P=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
\(=\frac{x^2-\sqrt{x}-2x\sqrt{x}+2x}{x-\sqrt{x}+1}=\frac{\left(x-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}=x-\sqrt{x}\)
\(=\left(x-\frac{2\sqrt{x}}{2}+\frac{1}{4}\right)-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{4}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy GTNN là \(\frac{-1}{4}\)đạt được khi x = \(\frac{1}{4}\)
a)
\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (ĐKXĐ \(a>0\))
\(\Leftrightarrow A=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-2\sqrt{a}\)
\(\Leftrightarrow a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\) (Với \(a>0\))
b)
Để A = 2 \(\Rightarrow a-\sqrt{a}=2\)
\(\Leftrightarrow\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)=0\)
\(\Leftrightarrow a=4\left(tm\right)\)
Vậy a = 4 thì A = 2 .
c)
\(A=a-\sqrt{a}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\) Với \(\forall a>0\)
Vậy GTNN của A là \(-\dfrac{1}{4}\) khi a = \(\dfrac{1}{4}\) .
\(A=\frac{3}{2+\sqrt{-x^2+2x+7}}=\frac{3}{2+\sqrt{-\left(x-1\right)^2+8}}\ge\frac{3}{2+\sqrt{8}}\)
Vậy GTNN của A là \(\frac{3}{2+\sqrt{8}}\) khi \(x=1\)
a: ĐKXĐ: x>=0; x<>1
b: \(A=x-\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1\)
\(=x-2\sqrt{x}+\sqrt{x}+1+1=x-\sqrt{x}+2\)
c: \(A=x-\sqrt{x}+\dfrac{1}{4}+\dfrac{7}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\)
Dấu '=' xảy ra khi x=1/4
cho đoạn thẳng ab kẻ tia ax bất kì trên kia ax lấy điểm c.d e sao cho ac =c:d =d;v
giải thích dùm đi
a: \(P=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\left(\sqrt{x}+1\right)\)
\(=x-\sqrt{x}+1-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+2\)
b: \(P=x-\sqrt{x}+\dfrac{1}{4}+\dfrac{7}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\)
Dấu '=' xảy ra khi x=1/4
Lời giải:
ĐKXĐ: $x\geq 0$
Ta thấy: $\sqrt{x}\geq 0; 2x+1>0$ với mọi $x\geq 0$
$\Rightarrow \frac{\sqrt{x}}{2x+1}\geq 0$
Vậy GTNN của biểu thức là $0$. Giá trị này đạt được khi $x=0$