K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
2 tháng 9 2018
sửa đề chút nha . nhưng chẳn bt số máy nên mk lây 9 nha :)
ta có : \(F=x^2+y^2-xy+3x+3y+9\)
\(=\dfrac{x^2-2xy+y^2+x^2+6x+9+y^2+6y+9}{2}\)
\(=\dfrac{\left(x-y\right)^2+\left(x+3\right)^2+\left(y+3\right)^2}{2}\ge0\)
\(\Rightarrow\) GTNN của \(F\) là \(0\) dâu "=" xảy ra khi \(x=y=-3\)
Vậy GTNN của \(F\) là \(0\) khi \(x=y=-3\)
HT
0
HT
0
22 tháng 12 2016
trước tiên bạn nên đưa về dạng tổng hai bình phương
HT
0
4 tháng 8 2016
a/ (x^2 + xy*2/2 + (y^2)/4) + ((3y^2)/4 - y*(√3)(√3)*2/2 + 3) - 3 = (x+y/2)^2 + (y√3 / 2 - √3)^2 - 3>=-3 đạt GTNN khi y=-2x=2