Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |x+2|+|3-x|>=|x+2+3-x|=|5|=5
dau "=" xay ra khi va chi khi (x+2)(3-x)>=0
=>x>=-2 hoặc x<=3
vạy GTNN cua bieu thuc la 5 khi va chi khi ...
b)cau b tuong tu
c) vi |x+1|>=0
|y+2|>=0
=>|x+1|+|y+2|>=0 dau "=" xay ra khi va chi khi x+1=0 va y+2=0
=>x=-1 va y=-2
vay GTNN cua bieu thuc la 0 khi va chi khi x=-1 va y=-2
Bài 1 :
a) Vì ( x + 1 )2 ≥ 0 ∀ x
=> M = ( x + 1 )2 - 3 ≥ -3
Dấu "=" xảy ra <=> ( x + 1 )2 = 0
<=> x + 1 = 0 <=> x = -1
b) Vì ( y + 3 )2 ≥ 0 ∀ x
=> N = 5 - ( y + 3 )2 ≥ 5
Dấu "=" xảy ra <=> ( y + 3 )2 = 0
<=> y + 3 = 0 <=> y = -3
Bài 1 :
a) \(A=x^2+3\left|y-2\right|-1\ge-1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
b) \(B=\left(2x^2\right)^4-3\ge-3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x^2=0\Leftrightarrow x=0\)
c) \(C=\left|x-\frac{1}{2}\right|+\left(y+2\right)^2+11\ge11\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}}\)
d) D ko có giá trị lớn nhất
e) \(E=-2017+\left(x-2\right)^2+\left(y+1\right)^2\ge-2017\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
g) \(G=\left|x\right|+\left|x-2\right|+3\)
\(G=\left|x\right|+\left|2-x\right|+3\)
\(G\ge\left|x+2-x\right|+3=\left|2\right|+3=2+3=5\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge0\\2-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le2\end{cases}\Leftrightarrow}0\le x\le2}\)
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
(x-2)2>= 0
/y-x/ >=0
=>(x-2)2 +/y-x/ >=0
Dấu = xảy ra <=> x-2=0=>x=2
x-y=0=>x=y
=>x=y=2
Vậy minA=3 <=> x=y=2