K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

21 tháng 8 2020

Mơn bạn nha

8 tháng 5 2019

\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)

\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)

\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)

\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)

\("="\Leftrightarrow x=3\)

2 tháng 7 2019

Ngại làm lần 2 quá bạn ơi 

Câu hỏi của Chuột yêu Gạo - Toán lớp 9 | Học trực tuyến

2 tháng 7 2019

\(A=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

\(A=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)

\(A=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(A=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)

\(A=\left|1-\sqrt{x-1}\right|+\left|\sqrt{x-1}+1\right|\ge\left|1-\sqrt{x-1}+\sqrt{x-1}+1\right|=\left|2\right|=2\)

Dấu "=" xảy ra \(\Leftrightarrow1\le x\le2\)

2 tháng 7 2019

\(B=\sqrt{x^2+4x+4}+\sqrt{x^2+6x+9}\)

\(B=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x+3\right)^2}\)

\(B=\left|x+2\right|+\left|x+3\right|\)

\(B=\left|-x-2\right|+\left|x+3\right|\ge\left|-x-2+x+3\right|=\left|1\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow-3\le x\le-2\)

2 tháng 8 2017

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

\(=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)

\(=\left|1-3x\right|+\left|3x-2\right|\)

\(\ge\left|1-3x+3x-2\right|=\left|-1\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(1-3x\right)\left(3x-2\right)\ge0\Leftrightarrow\frac{1}{3}\le x\le\frac{2}{3}\)

Vậy \(A_{min}=1\) tại \(\frac{1}{3}\le x\le\frac{2}{3}\)

2 tháng 8 2017

Xin lỗi cậu tớ mới học lớp 7 thôi