Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(MaxA=\sqrt{3}\)<=>Dấu ''='' xảy ra
<=>x=2
b) Min A =2019<=>Dấu ''='' xảy ra
<=>2x-5=0
<=>x=5/2
M = |(x - 2020)(x2 - 16)| + 2x(x - 4) + 8(4 - x ) + 2021
= |(x - 2020)(x2 - 16)| + 2x(x - 4) - 8(x - 4 ) + 2021
= |(x - 2020)(x2 - 16)| + (x - 4)(2x - 8) + 2021
= |(x - 2020)(x2 - 16)| + 2(x - 4)2 + 2021
Lại có \(\hept{\begin{cases}\left|\left(x-2020\right)\left(x^2-16\right)\right|\ge0\forall x\\2\left(x-4\right)^2\ge0\forall x\end{cases}}\)
=> |(x - 2020)(x2 - 16) + 2(x - 4)2 + 2021 \(\ge2021\forall x\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2020\right)\left(x^2-16\right)=0\\2\left(x-4\right)^2=0\end{cases}}\)
Khi (x - 2020)(x2 - 16) = 0
=> \(\orbr{\begin{cases}x-2020=0\\x^2-16=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2020\\x=\pm4\end{cases}}\)(1)
Khi 2(x - 4)2 = 0
=> x - 4 = 0
=> x = 4 (2)
Từ (1) (2) => x = 4
Vậy Min M = 2021 <=> x = 4
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
3 câu này bạn áp dụng cái này nhé.
`a^2 >=0 forall a`.
`|a| >=0 forall a`.
`1/a` xác định `<=> a ne 0`.
a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y
Dấu = xảy ra khi x=-30 và y=4
b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y
Dấu = xảy ra khi x=-1/3 và y=1/6
c: -x^2-x+1=-(x^2+x-1)
=-(x^2+x+1/4-5/4)
=-(x+1/2)^2+5/4<=5/4
=>R>=3:5/4=12/5
Dấu = xảy ra khi x=-1/2
A= \(|\sqrt{x^2}+\sqrt{1}-9|+|\sqrt{x^2}+\sqrt{1}-12|\)
A=\(|x+1-9|+|x+1-12|\)
A=\(|x-8|+|x-11|\)
TH1: x<0
=> A= (-x)-8 + (-x) -11
A=(-x-x)-(8+11)
A=-2x-19
TH2:x>0
=> A=x-8+x-11
A=(x+x)-(8+11)
A=2x-19
Tương tự x=0 sau đấy cậu KL nhé, phần sau mình lười
Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\):
\(\left|\sqrt{x^2+1}-9\right|+\left|\sqrt{x^2+1}-12\right|\)\(=\left|\sqrt{x^2+1}-9\right|+\left|12-\sqrt{x^2+1}\right|\)
\(\ge\left|\left(\sqrt{x^2+1}-9\right)+\left(12-\sqrt{x^2+1}\right)\right|=3\)
Vậy \(A_{min}=3\Leftrightarrow\left(\sqrt{x^2+1}-9\right)\left(12-\sqrt{x^2+1}\right)\ge0\)
\(TH1:\hept{\begin{cases}\sqrt{x^2+1}-9\ge0\\12-\sqrt{x^2+1}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+1\ge81\\x^2+1\le144\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2\ge80\\x^2\le143\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{80}\le x\le\sqrt{143}\\-\sqrt{80}\ge x\ge-\sqrt{143}\end{cases}}\)
\(TH2:\hept{\begin{cases}\sqrt{x^2+1}-9\le0\\12-\sqrt{x^2+1}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+1\le81\\x^2+1\ge144\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2\le80\\x^2\ge143\end{cases}}\left(L\right)\)
Để A đạt GTNN thì 2|x-1009| và |2x+1| phải đạt GTNN
2|x-1009| \(\ge0\)
|2x+1| \(\ge0\)
=> Xét : Nếu 2|x-1009| + |2x+1| > 0
Thì |x-1009| khác 0
|2x+1| khác 0
Do đó :
\(x-1009>0\)
\(2x+1>0\)
\(\Rightarrow2\left|x-1009\right|=2x-2018+2x+1\)
\(=2019\)
Xét : Nếu 2|x-1009| = 0
|2x+1|=0
=> 2|x-1009|=|2x+1|=0
2 > 0 => |x-1009|=|2x+1| = 0
x - 1009 -2x - 1= 0
-x = 1010
x = -1010
=> 2|-1010-1009|+|2*-1010+1| > 2019
Vậy GTNN của A= 2019 đtạ được khi 2|x-1009| và |2x+1| khác 0
F = | 2x - 2 | + | 2x - 2003 |
F = | 2x - 2 | + | -( 2x - 2003 ) |
F = | 2x - 2 | + | 2003 - 2x |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
F = | 2x - 2 | + | 2003 - 2x | ≥ | 2x - 2 + 2003 - 2x | = | 2001 | = 2001
Đẳng thức xảy ra khi ab ≥ 0
=> ( 2x - 2 )( 2003 - 2x ) ≥ 0
Xét hai trường hợp :
1/ \(\hept{\begin{cases}2x-2\ge0\\2003-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge2\\-2x\ge-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2003}{2}\end{cases}\Rightarrow}1\le x\le\frac{2003}{2}\)
2/ \(\hept{\begin{cases}2x-2\le0\\2003-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}2x\le2\\-2x\le-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{2003}{2}\end{cases}}\)( loại )
Vậy MinF = 2001 <=> \(1\le x\le\frac{2003}{2}\)
G = | 2x - 3 | + 1/2| 4x - 1 |
G = | 2x - 3 | + | 2x - 1/2 |
G = | -( 2x - 3 ) | + | 2x - 1/2 |
G = | 3 - 2x | + | 2x - 1/2 |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
G = | 3 - 2x | + | 2x - 1/2 | ≥ | 3 - 2x + 2x - 1/2 | = | 5/2 | = 5/2
Đẳng thức xảy ra khi ab ≥ 0
=> ( 3 - 2x )( 2x - 1/2 ) ≥ 0
Xét 2 trường hợp :
1/ \(\hept{\begin{cases}3-2x\ge0\\2x-\frac{1}{2}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\le\frac{3}{2}\\x\ge\frac{1}{4}\end{cases}}\Rightarrow\frac{1}{4}\le x\le\frac{3}{2}\)
2/ \(\hept{\begin{cases}3-2x\le0\\2x-\frac{1}{2}\le0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\le-3\\2x\le\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\le\frac{1}{4}\end{cases}}\)( loại )
=> MinG = 5/2 <=> \(\frac{1}{4}\le x\le\frac{3}{2}\)
H = | x - 2018 | + | x - 2019 | + | x - 2020 |
H = | x - 2019 | + [ | x - 2018 | + | x - 2020 | ]
H = | x - 2019 | + [ x - 2018 | + | -( x - 2020 ) | ]
H = | x - 2019 | + [ | x - 2018 | + | 2020 - x | ]
Ta có : | x - 2019 | ≥ 0 ∀ x
| x - 2018 | + | 2020 - x | ≥ | x - 2018 + 2020 - x | = | 2 | = 2 ( BĐT | a | + | b | ≥ | a + b | )
=> | x - 2019 | + [ | x - 2018 | + | 2020 - x | ] ≥ 2
Đẳng thức xảy ra <=> \(\hept{\begin{cases}\left|x-2019\right|=0\\\left(x-2018\right)\left(2020-x\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2019\\2018\le x\le2020\end{cases}}\)
=> x = 2019
=> MinH = 2 <=> x = 2019
\(D=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|\)
\(=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|-\left(x+\dfrac{1}{4}\right)\right|\)
\(=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|-x-\dfrac{1}{4}\right|\)
\(\ge x+\dfrac{1}{2}+0-x-\dfrac{1}{4}=\dfrac{1}{4}\)
Đẳng thức xảy ra khi \(x=-\dfrac{1}{3}\)
Vậy với \(x=-\dfrac{1}{3}\) thì \(D_{Min}=\dfrac{1}{4}\)
Ta có : | x + 1/2 | > hoặc = 0
| x + 1/3 | > hoặc = 0
| x + 1/4 | > hoặc = 0
=> D = | x + 1/2 | + | x + 1/3 | + | x + 1/4 | > hoặc = 0
Dấu " = " xảy ra khi D = 0
Vậy GTNN của biểu thức D là 0
vì \(\left(2^x+\dfrac{1}{3}\right)^4\) có mũ chẵn là 4 +> \(\left(2^x+\dfrac{1}{3}\right)^4\) > hoặc bằng 0 . Vậy GTNN của \(\left(2^x+\dfrac{1}{3}\right)^4\)= 0 .
vi GTNN cua \(\left(2^x+\dfrac{1}{3}\right)^4\)=> \(\left(2^x+\dfrac{1}{3}\right)^4\)-1 =0 -1=-1
vay GTNN cua \(\left(2^x+\dfrac{1}{3}\right)^4\)-1 =-1
b, vi \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) co mu chan la 2018 => \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) . hoặc bằng 0
Vậy GTLN của \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) = 0 .Vì \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) = 0 =>
\(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) +3=0+3=3
Vậy GTLN của \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\)+3=3
\(A=\left|2021-x\right|+\dfrac{1}{2}\left|4040-2x\right|\)
\(A=\left|2021-x\right|+\left|2020-x\right|\)
\(A=\left|2021-x\right|+\left|x-2020\right|\ge\left|2021-x+x-2020\right|=1\)
\(A_{min}=1\) khi \(2020\le x\le2021\)