K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2017

Dấu của hạng tử bậc là dấu âm nên chỉ tìm được giá trị lớn nhất thôi nhé.

\(\text{a) }A=2x-x^2\\ A=2x-x^2+1-1\\ A=1-\left(x^2-2x+1\right)\\ A=1-\left(x-1\right)^2\\ Do\text{ }\left(x-1\right)^2\ge0\forall x\\ \Rightarrow A=1-\left(x-1\right)^2\le1\forall x\\ \text{ Dấu “=” xảy ra khi: }\\ \left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\\ Vậy\text{ }Max_A=1\text{ }khi\text{ }x=1\)

\(\text{b) }B=19-6x-9x^2\\ B=20-1-6x-9x^2\\ B=20-\left(1+6x+9x^2\right)\\ B=20-\left(1+3x\right)^2\\ Do\text{ }\left(1+3x\right)^2\ge0\forall x\\ \Rightarrow B=20-\left(1+3x\right)^2\le20\forall x\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\\ \left(1+3x\right)^2=0\\ \Leftrightarrow1+3x=0\\ \Leftrightarrow3x=-1\\ \Leftrightarrow x=-\dfrac{1}{3}\\ Vậy\text{ }Max_B=20\text{ }khi\text{ }x=-\dfrac{1}{3}\)

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

25 tháng 6 2019

TL:

a,\(-\left(x^2-2x+1\right)+1\)1

\(-\left(x-1\right)^2+1\) \(\le\) 1

=>giá trị lớn nhất của biểu thức là 1

vậy........

b,\(-\left(9x^2+6x+1\right)+20\) 

   \(-\left(3x+1\right)^2+20\) 

  \(\le20\) 

=>giá trị lớn nhất cuar biểu thức là 20

vậy.........

hc tốt

Dấu của hạng tử bậc là dấu âm nên chỉ tìm được giá trị lớn nhất thôi nhé.

a) A=2xx2A=2xx2+11A=1(x22x+1)A=1(x1)2Do (x1)20xA=1(x1)21x Du “=” xy ra khi: (x1)2=0x1=0x=1Vy MaxA=1 khi x=1

b) B=196x9x2B=2016x9x2B=20(1+6x+9x2)B=20(1+3x)2Do (1+3x)20xB=20(1+3x)220xDu "=" xy ra khi:(1+3x)2=01+3x=03x=1x=13Vy MaxB=20 khi x=13

2 tháng 9 2020

a) Ta có : \(A=x^2-x+3=\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

Vạy GTNN của \(A=\frac{11}{4}\) tại \(x=\frac{1}{2}\)

b) \(B=2x^2+10x-2\)

\(=2.\left(x^2+5x-1\right)\)

\(=2.\left[\left(x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}\right)-\frac{29}{4}\right]\)

\(=2.\left(x+\frac{5}{2}\right)^2-\frac{29}{2}\ge-\frac{29}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{5}{2}\)

Vạy GTNN của \(B=-\frac{29}{2}\) tại \(x=-\frac{5}{2}\)

c) \(C=19-6x-9x^2\)

\(=-\left(9x^2+6x\right)+19\)

\(=-\left[\left(3x\right)^2+2.3x.1+1\right]+20\)

\(=-\left(3x+1\right)^2+20\le20\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{1}{3}\)

Vậy GTLN của \(C=20\) khi \(x=-\frac{1}{3}\)

2 tháng 9 2020

Bạn tham khảo tại linh này : Câu hỏi của Zero Two - Toán lớp 8 - Học toán với OnlineMath

2 tháng 9 2020

Đăng một lần thôi bạn :v Tụi mình thấy và làm cho bạn mà :))

A = x2 - x + 3

= ( x2 - x + 1/4 ) + 11/4

= ( x - 1/2 )2 + 11/4

( x - 1/2 )2 ≥ 0 ∀ x => ( x - 1/2 )2 + 11/4 ≥ 11/4

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

=> MinA = 11/4 <=> x = 1/2

B = 2x2 + 10x - 2

= 2( x2 + 5x + 25/4 ) - 29/2

= 2( x + 5/2 )2 - 29/2

2( x + 5/2 )2 ≥ 0 ∀ x => 2( x + 5/2 )2 - 29/2 ≥ -29/2

Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2

=> MinB = -29/2 <=> x = -5/2

C = 19 - 6x - 9x2

= -( 9x2 + 6x + 1 ) + 20

= -( 3x + 1 )2 + 20

-( 3x + 1 )2 ≤ 0 ∀ x => -( 3x + 1 )2 + 20 ≤ 20

Đẳng thức xảy ra <=> 3x + 1 = 0 => x = -1/3

=> MaxC = 20 <=> x = -1/3

2 tháng 9 2020

Bạn xem tại link này nhé : Câu hỏi của Zero Two - Toán lớp 8 - Học toán với OnlineMath

2 tháng 9 2020

A = x2 - x + 3 = (x2 - x + 1/4) + 11/4 = (x - 1/2)2 + 11/4

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Dấu "=" xảy ra <=> x - 1/2 = 0

=> x = 1/2

Vậy MIN A = 11/4 <=> x = 1/4

b) B = 2x2 + 10x - 2 = (2x2 + 10x + 25/2) - 29/2 = 2(x + 2,5)2 - 29/2 \(\ge-\frac{29}{2}\)

Dấu "=" xảy ra <=> x + 2,5 = 0

=> x = -2,5

Vậy MIN B = -29/2 <=> x = -2,5

c) C = 19 - 6x2 - 9x2 = -(9x2 + 6x + 1) + 20 = -(3x + 1)2 + 20 \(\le\)20

Dấu "=" xảy ra <=> 3x +  1 = 0

=> x = -1/3

Vậy Max C = 20 <=> x = -1/3

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4