Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mẫu câu đầu
\(4x^2+4x-5=4x^2+4x+1-6\)
\(=4\left(x^2+x+\frac{1}{4}\right)-9\)
\(=4\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)-6\)
\(=4\left(x+\frac{1}{2}\right)^2-6\ge-6\)
Vậy Min A=-6 dấu bằng xảy ra khi và chỉ khi \(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
a: \(=4a^2+4a+1-6=\left(2a+1\right)^2-6>=-6\)
Dấu = xảy ra khi a=-1/2
b: \(=-\left(y^2-4y-3\right)\)
\(=-\left(y^2-4y+4-7\right)\)
\(=-\left(y-2\right)^2+7< =7\)
Dấu = xảy ra khi y=2
c: \(=-25x^2+3x\)
\(=-25\left(x^2-\dfrac{3}{25}x\right)\)
\(=-25\left(x^2-2\cdot x\cdot\dfrac{3}{50}+\dfrac{9}{2500}-\dfrac{9}{2500}\right)\)
\(=-25\left(x-\dfrac{3}{50}\right)^2+\dfrac{9}{100}< =\dfrac{9}{100}\)
Dấu = xảy ra khi x=3/50
e: \(=3\left(x^2+\dfrac{7}{3}x+\dfrac{1}{3}\right)\)
\(=3\left(x^2+2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}\right)\)
\(=3\left(x+\dfrac{7}{6}\right)^2-\dfrac{37}{12}>=-\dfrac{37}{12}\)
Dấu = xảy ra khi x=-7/6
1) \(\frac{4a^2-b^2}{4a^2-4ab+b^2}\)=\(\frac{\left(2a-b\right)\left(2a+b\right)}{\left(2a-b\right)^2}=\frac{2a+b}{2a-b}\)
2) \(\frac{x^2+7x+6}{x^2-1}=\frac{\left(x+1\right)\left(x+6\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x+6}{x-1}\)
c) \(\frac{a\left(a^2-ab+b^2\right)}{b\left(a+b\right)\left(a^2-ab+b^2\right)}\)
=\(\frac{a}{b\left(a+b\right)}\)
giả sử P đạt GTNN khi a=x, b=y; c=z. khi đó ta có:
x,y,z>0 và 4x+3y+4z=22
ta thấy với a=x; b=y; c=z thì
\(\frac{1}{3a}=\frac{1}{3x}=\frac{1}{3x^2};\frac{2}{b}=\frac{2}{y}=\frac{2}{y^2},\frac{3}{c}=\frac{3}{z}=\frac{3}{z^2}\)
do đó, các đánh giá sau sẽ đảm bảo được điều kiện đẳng thức
\(\hept{\begin{cases}\frac{1}{3a}+\frac{a}{3x^2}\ge2\sqrt{\frac{1}{3a}\cdot\frac{a}{3a^2}}=\frac{2}{3x}\\\frac{2}{b}+\frac{2b}{y^2}\ge2\sqrt{\frac{2}{b}\cdot\frac{2b}{y^2}}=\frac{4}{y}\\\frac{3}{c}+\frac{3c^2}{z}\ge2\sqrt{\frac{3}{c}\cdot\frac{3c}{z^2}}=\frac{6}{z}\end{cases}}\)
\(\Rightarrow\frac{1}{3a}\ge\frac{2}{3x}-\frac{a}{3x^2};\frac{2}{b}\ge\frac{4}{y}-\frac{2b}{y^2};\frac{3}{c}\ge\frac{6}{z}-\frac{3c}{z^2}\)
và như vậy, ta đã chuyển được các phân thức về dạng bậc nhất và thu được
\(P\ge a+b+c+\left(\frac{2}{3x}-\frac{a}{3x^2}\right)+\left(\frac{4}{y}-\frac{2b}{y^2}\right)+\left(\frac{6}{z}-\frac{3c}{z^2}\right)\)
\(=\left(1-\frac{1}{3x^2}\right)a+\left(1-\frac{2}{y^2}\right)b+\left(1-\frac{3}{z^2}\right)c+\frac{2}{3x}+\frac{4}{y}+\frac{6}{z}\)
vấn đề còn lại là ta phải chọn các số x,y,z thích hợp làm sao để có thể sử dụng được giả thiếu 4a+3b+4c=22
muốn vậy các hệ số của a,b,c trong đánh giá trên phải thành lập tỉ lệ 4:3:4 tức là
\(\frac{1-\frac{1}{3x^2}}{4}=\frac{1-\frac{1}{y^2}}{3}=\frac{1-\frac{3}{z^2}}{4}\)
vậy điểm rơi thực sự của bài toán chình là nghiệm của hệ phương trình \(\hept{\begin{cases}4x+3y+4z=22\\\frac{1-\frac{1}{3x^2}}{4}=\frac{1-\frac{2}{y^2}}{3}=\frac{1-\frac{3}{z^2}}{4}\end{cases}\left(1\right)}\)
giải hệ này ta tìm được x=1; y=2; z=3. khi đó ta có:
\(P\ge\left(1-\frac{1}{3}\right)a+\left(1-\frac{2}{2^2}\right)b+\left(1-\frac{3}{3^2}\right)c+\frac{2}{3}+\frac{4}{2}+\frac{6}{3}\)
\(=\frac{4a+3b+4c}{6}+\frac{14}{3}=\frac{22}{6}+\frac{14}{3}=\frac{25}{3}\)
đẳng thức xảy ra khi a=x=1; b=y=2 và c=z=3
Lời giải:
Thay \(a=b+1\) ta có:
\(G=4(b+1)^2+b^2-4b(b+1)+4(b+1)-2b\)
Khai triển thu được:
\(G=b^2+6b+8\)
\(\Leftrightarrow G=(b+3)^2-1\geq -1\)
Do đó \(G_{\min}=-1\). Dấu bằng xảy ra khi \(b=-3\Leftrightarrow a=-2\)
\(G=\left[\left(2a\right)^2-2\left(2a\right).b+b^2\right]+2\left(2a-b\right)\)
\(G=\left(2a-b\right)^2+2\left(2a-b\right)\)
\(G=\left(a+a-b\right)^2+2\left(a+a-b\right)\)
\(G=\left(a+1\right)^2+2\left(a+1\right)\)
\(G=\left(a+1\right)^2+2\left(a+1\right)+1-1\)
\(G=\left(a+1+1\right)^2-1\)
\(G=\left(a+2\right)^2-1\)
\(G\ge-1\)
Đẳng thức khi \(a=-2;b=-3\)