K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

Ta có :

\(B=x^2+xy+y^2-2x-3y+2019\)

\(\Leftrightarrow4B=4x^2+4xy+4y^2-8x-12y+8076\)

\(\Leftrightarrow4B=\left(4x^2+4xy+y^2\right)-4\left(2x+y\right)+4+3y^2-4y+4022\)

\(\Leftrightarrow2B=\left(2x+y\right)^2-4\left(2x+y\right)+4+3\left(y^2-\frac{4}{3}y+\frac{4}{9}\right)+\frac{12062}{3}\)

\(\Leftrightarrow2B=\left(2x+y-2\right)^2+3\left(y-\frac{2}{3}\right)^2+\frac{12062}{3}\ge\frac{12062}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{2}{3}\)

Bạn kiểm tra lại nhé, mình k chắc có đúng k nữa !

10 tháng 10 2019

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi

10 tháng 10 2019

đến đấy rồi sao nữa bạn

NV
10 tháng 10 2019

\(B=x^2+\frac{y^2}{4}+1+xy-2x-y+\frac{3}{4}\left(y^2-\frac{4}{3}y+\frac{4}{9}\right)+\frac{6056}{3}\)

\(B=\left(x+\frac{y}{2}-1\right)^2+\frac{3}{4}\left(y-\frac{2}{3}\right)^2+\frac{6056}{3}\ge\frac{6056}{3}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{2}{3}\\y=\frac{2}{3}\end{matrix}\right.\)

24 tháng 6 2021

Trả lời:

1, \(P=9x^2-7x+2=9\left(x^2-\frac{7}{9}x+\frac{2}{9}\right)=9\left[\left(x^2-2x\frac{7}{18}+\frac{49}{324}\right)+\frac{23}{324}\right]\)

\(=9\left[\left(x-\frac{7}{18}\right)^2+\frac{23}{324}\right]=9\left(x-\frac{7}{18}\right)^2+\frac{23}{36}\)

Ta có: \(9\left(x-\frac{7}{18}\right)^2\ge0\forall x\)

\(\Leftrightarrow9\left(x-\frac{7}{18}\right)^2+\frac{23}{26}\ge\frac{23}{26}\forall x\)

Dấu "=" xảy ra khi \(x-\frac{7}{18}=0\Leftrightarrow x=\frac{7}{18}\)

Vậy GTNN của P = 23/36 khi x = 7/18

3 tháng 9 2018

\(A=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2047\)

   \(=xy\left(x-2\right)\left(y+6\right)+12\left(x^2-2x\right)+3y\left(y+6\right)+2047\)

   \(=y\left(y+6\right)\left(x^2-2x\right)+12\left(x^2-2x+3\right)+3y\left(y+6\right)+2011\)

   \(=y\left(y+6\right)\left(x^2-2x+3\right)+12\left(x^2-2x+3\right)+2011\)

   \(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)+2011\)

   \(=\left[\left(x-1\right)^2+2\right].\left[\left(y+3\right)^2+3\right]+2011\ge2.3+2011=2017\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)

Vậy GTNN của A là 2017 khi \(x=1,y=-3\)

24 tháng 10 2019

đặt x+y=a; xy=b; ta có \(b\le\frac{a^2}{4}\)

B = \(a^2-b-3a+2019\ge a^2-\frac{a^2}{4}-3a+2019=\frac{3}{4}\left(a-2\right)^2+2016\)\(\ge2016\)

B đạt GTNN khi a= \(2;a^2=4b\) <=> x=y = 1

13 tháng 6 2019

\(xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2045.\)

\(=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y\right)+2045\)

\(=\left[\left(x^2-2x\right)\left(y^2+6y\right)+3\left(y^2+6y\right)\right]+12\left(x^2-2x+3\right)+2009.\)

\(=\left(x^2-2x+3\right)\left(y^2+6x\right)+12\left(x^2-2x+3\right)+2009\)

\(=\left(x^2-2x+3\right)\left(y^2+6x+12\right)+2009\)

\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+2009\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Leftrightarrow\left(x-1\right)^2+2\ge2\)

\(\left(y+3\right)^2\ge0\forall y\Leftrightarrow\left(y+3\right)^2+3\ge3\)

Suy ra \(B=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+2009\ge2.3+2009=2015\)

Vậy GTNN của B=2015 khi x=1, y=-3.

16 tháng 2 2024

sai từ dấu = thứ 3 rồi bạn