\(\in\) N*

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2021

Có :\(\left(x-y\right)⋮11\)=> M\(⋮11\)

       N= \(y^2-x^2\) = \(-\text{(}x^2-y^2\text{)}=-\text{[}\left(x-y\right).\left(x+y\right)\text{]}\)=> N\(⋮11\)

=> M-N \(⋮11\)

Vậy \(M-N⋮11\)(đpcm)

2 tháng 9 2017

Ta có : \(\frac{3x-y}{x+y}=\frac{3}{4}\)

\(\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)

\(\Rightarrow12x-4y=3x+3y\)

\(\Rightarrow12x-3x=3y+4y\)

\(\Leftrightarrow9x=7y\)

\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)

28 tháng 2 2019

a ) \(N=\left(x+1\right)^2+\left(y-\sqrt{2}^2\right)+2008\ge0+0+2008=2008\)

=> MinN đạt được bằng 2008 khi

\(\left\{{}\begin{matrix}x=-1\\y=\sqrt{2}\end{matrix}\right.\)

Thay vào M ,ta có

\(3x+\dfrac{x^2-y^2}{x^2+1}=-3+\dfrac{9-2}{1+1}=-3+3,5=0,5\)

b) Với x , y dương , ta được ngay ĐPCM

Với x âm , y âm , ta cũng được ĐPCM

Vậy nên xét trường hợp x,y trái dấu

\(2x^4y^2\ge0\)

\(7x^3y^5\le0\)

\(\Rightarrow2x^4y^2-7x^3y^5\ge0\) ( ĐPCM)

c)

\(2^{x+1}+2^{x+4}+2^{x+5}=2^5\cdot5^2\)

\(\Rightarrow2^{x+1}\left(1+2^3+2^4\right)=2^5\cdot5^2\)

\(\Rightarrow2^{x+1}\cdot5^2=2^5\cdot5^2\)

\(\Rightarrow2^{x+1}=2^5\Rightarrow x=4\)

Bài 1: 

a: \(\left(2x-1\right)^4=16\)

=>2x-1=2 hoặc 2x-1=-2

=>2x=3 hoặc 2x=-1

=>x=3/2 hoặc x=-1/2

b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)

c: \(10800=2^4\cdot3^3\cdot5^2\)

mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)

nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)

 

1 tháng 12 2016

A B C M K E H 1 2 3 1 1 2 1 2 3

Do ΔABC cân nên AM vừa là đường trung tuyến vừa là đường trung trực với cạnh BC

=> ΔAMB và ΔAMC vuông cân và bằng nhau

=> Góc C1= Góc A1

Xét ΔABH và ΔCAK có

BA=AC( ΔABC cân)

Góc B1=Góc A3 ( cùng phụ với góc BAK)

Đều  _|_ AK

=> ΔCAK=ΔABH ( cạnh huyền góc nhọn)

=> Góc BAK = Góc CAK

Mà Góc C1= Góc A1

=> Góc A2= Góc C2 

Xét 2  ΔAHM và ΔCKM có

AM=MC ( đường trung tuyến ứng với cạnh huyền)

Góc A2= Góc C2 (cmt)

AH=CK (vì ΔCAK=ΔABH)

=> ΔAHM = ΔCKM (c.g.c) 

=>HM=MK=>  ΔMHK cân tại M (1)

Ta lại có Góc M1= Góc M2

mà Góc M1+góc M3=90o 

=> Góc M2+ Góc M3 = Góc HMK =90o (2)

Từ (1) Và (2) => ΔMHK vuông cân tại M

1 tháng 12 2016

1,Ta có: Tam giác ABC là tam giác vuông cân 

=> AB=AC 

Mặt khác có: 

mà  => Lại có:Tam giác HBA vuông tại H và tam giác KAC vuông tại K  

Từ ;; => tam giác HBA = tam giác KAC﴾Ch‐gn﴿

=>BH=AK﴾đpcm﴿

2,Ta có:AM là trung tuyến của tam giác cân => AM cũng là đường cao

Mặt khác: 

mà    => Tam giác AHM=tam giác CKM ﴾c.g.c﴿ vì

Có:AM=MC﴾AM là trung tuyến ứng với cạnh huyền﴿

AH=CK ﴾câu a﴿

=>MH=MK  và   

Ta có: ﴾AM là đường cao﴿

Từ ; => Góc HMK vuông 

Kết hợp ;=> MHK là tam giác vuông cân 

11 tháng 7 2017

a, Với mọi giá trị của x;y ta có:

\(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\)

Hay \(C\ge-10\)với mọi giá trị của x;y

Để \(C=-10\) thì \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10=-10\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-\dfrac{1}{3}\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy................

b, Với mọi giá trị của x ta có:

\(\left(2x-1\right)^2+3\ge3\Rightarrow\dfrac{5}{\left(2x-1\right)^2+3}\ge\dfrac{5}{3}\)

Hay \(D\ge\dfrac{5}{3}\) với mọi giá trị của x.

Để \(D=\dfrac{5}{3}\) thì \(\dfrac{5}{\left(2x-1\right)^2+3}=\dfrac{5}{3}\)

\(\Rightarrow\left(2x-1\right)^2=0\Rightarrow x=\dfrac{1}{2}\)

Vậy..................

Chúc bạn học tốt!!!

11 tháng 7 2017

\(C=\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\)

\(\left(x+1\right)^2\ge0;\left(y-\dfrac{1}{3}\right)^2\ge0\)

\(C_{MIN}\Rightarrow\left(x+1\right)^2_{MIN};\left(y-\dfrac{1}{3}\right)^2_{MIN}\)

\(\left(x+1\right)^2_{MIN}=0;\left(y-\dfrac{1}{3}\right)^2_{MIN}=0\)

\(\Rightarrow C_{MIN}=0+0-10=-10\)

\(D=\dfrac{5}{\left(2x-1\right)^2+3}\)

\(D_{MAX}\Rightarrow\left(2x-1\right)^2+3_{MIN}\)

\(\left(2x-1\right)^2\ge0\)

\(\left(2x-1\right)^2+3_{MIN}\Rightarrow\left(2x-1\right)^2_{MIN}=0\)

\(\Rightarrow\left(2x-1\right)^2+3_{MIN}=0+3=3\)

\(\Rightarrow D_{MAX}=\dfrac{5}{3}\)