Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
=> \(\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\forall x\)
Dấu "=" xảy ra <=> \(2x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{6}\)
Vậy Min A = -1 <=> X = -1/6
a, \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\)
Dấu "=" xảy ra <=> 2x+1/3=0 <=> x= -1/6
a) \(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow A\ge-1\)
Dấu \(=\)xảy ra khi \(2x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{6}\).
b) \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\Rightarrow B\le3\)
Dấu \(=\)xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\).
Ta có : \(\left|x+3\right|\ge0\forall x\)
\(\left|2x-5\right|\ge0\forall x\)
\(\left|x-7\right|\ge0\forall x\)
\(\Rightarrow\left|x+3\right|+\left|2x-5\right|+\left|x-7\right|\ge0\forall x\)
Dấu = xảy ra khi : \(\left|x+3\right|=0\); \(\left|2x-5\right|=0\); \(\left|x-7\right|=0\)
* \(\left|x+3\right|=0\Rightarrow x=-3\)
*\(\left|2x-5\right|=0\Rightarrow x=\frac{5}{2}\)
*\(\left|x-7\right|=0\Rightarrow x=7\)
TH1 : Với x = - 3 ta thay vào biểu thức đề bài cho ta được:
\(\left|-3+3\right|+\left|2.\left(-3\right)-5\right|+\left|-3-7\right|\)
\(=0+11+10=21\)
TH2 : Với \(x=\frac{5}{2}\)ta thay vào biểu thức đề bài cho ta được:
\(\left|\frac{5}{2}+3\right|+\left|2.\frac{5}{2}-5\right|+\left|\frac{5}{2}-7\right|\)
\(=\frac{11}{2}+0+\frac{9}{2}=10\)
TH3 : Với x = 7 ta thay vào biểu thức đề bài cho ta được:
\(\left|7+3\right|+\left|2.7-5\right|+\left|7-7\right|\)
\(=10+9+0=19\)
Vậy với \(x=\frac{5}{2}\)thì \(\left|x+3\right|+\left|2.x-5\right|+\left|x-7\right|\)nhỏ nhất và = 10
\(P=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}........\frac{189}{190}=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}........\frac{378}{380}\)
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}........\frac{18.21}{19.20}=\frac{1.2.3......18}{2.3.4....19}.\frac{4.5.6....21}{3.4.5....20}\)
\(P=\frac{1}{19}.\frac{21}{3}=\frac{21}{57}\)
\(A=\left(2x+\frac{1}{3}\right)^4-1=\left[\left(2x+\frac{1}{3}\right)^2\right]^2-1\)
Vì \(\left[\left(2x+\frac{1}{3}\right)^2\right]^2\ge0\) nên \(\left[\left(2x+\frac{1}{3}\right)^2\right]^2-1\ge-1\) hay \(A\ge-1\)
Nên GTNN của A là -1 đạt được khi \(2x+\frac{1}{3}=0\Leftrightarrow2x=-\frac{1}{3}\Leftrightarrow x=-\frac{1}{6}\)
Câu 1 :
A = (2012+2) . [ ( 2012-2) : 3+1 ] : 2 = 2014 . 671 : 2 = 675697
B = \(\frac{1}{2}\). \(\frac{2}{3}\). \(\frac{3}{4}\)+...+ \(\frac{2010}{2011}\). \(\frac{2011}{2012}\)= \(\frac{1.2.3.....2010.2011}{2.3.4.....2011.2012}\)= \(\frac{1}{2012}\)
Câu 2 :
a) \(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)
=> \(\left(3y-2\right).\left(2x+1\right)=-55\)
=> \(3y-2;2x+1\in\: UC\left(-55\right)\)
=> \(3y-2;2x+1=\left\{1;-1;5;-5;11;-11;55;-55\right\}\)
- Vậy ta có bảng
\(2x+1\) | 1 | -1 | 5 | -5 | 11 | -11 | 55 | -55 |
\(x\) | 0 | -1 | 2 | -3 | 5 | -6 | 27 | -28 |
\(3y-2\) | -55 | 55 | -11 | 11 | -5 | 5 | -1 | 1 |
\(3y\) | -53 | 57 | -9 | 13 | -3 | 7 | 1 | 3 |
\(y\) | \(\frac{-53}{3}\)(loại) | 19(chọn) | -3(chọn) | \(\frac{13}{3}\)(loại) | -1(chọn) | \(\frac{7}{3}\)(loại) | \(\frac{1}{3}\)(loại) | 1(chọn) |
\(\Leftrightarrow\)Những cặp (x;y) tìm được là :
(-1;19) ; (2;-3) ; (5;-1) ; (-28;1)
b) Ta đặt vế đó là A
Ta xét A : \(\frac{1}{4^2}\)< \(\frac{1}{2.4}\)
\(\frac{1}{6^2}\)< \(\frac{1}{4.6}\)
\(\frac{1}{8^2}\)< \(\frac{1}{6.8}\)
...
\(\frac{1}{\left(2n\right)^2}\)< \(\frac{1}{\left(2n-2\right).2n}\)
\(\Leftrightarrow\)A < \(\frac{1}{2.4}\)+ \(\frac{1}{4.6}\)+...+ \(\frac{1}{\left(2n-2\right).2n}\)
\(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{2}{2.4}\)+ \(\frac{2}{4.6}\)+...+ \(\frac{2}{\left(2n-2\right).2n}\))
\(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{6}\)+...+ \(\frac{1}{2n-2}\)- \(\frac{1}{2n}\))
\(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)- \(\frac{1}{2n}\)) = \(\frac{1}{2}\). \(\frac{1}{2}\)- \(\frac{1}{2}\). \(\frac{1}{2n}\)
\(\Leftrightarrow\)A < \(\frac{1}{4}\)- \(\frac{1}{4n}\)< \(\frac{1}{4}\) ( Vì n \(\in\)N )
\(\Leftrightarrow\)A < \(\frac{1}{4}\)( đpcm ) .
https://dethihsg.com/de-thi-hoc-sinh-gioi-phong-gddt-hoang-hoa-2014-2015/
vào đây gợi ý nhé
k mik đi
@_@
Vì tử số là số âm nên mẫu số phải là số dương nhỏ nhất.
Ta thấy |2x + 6| lớn hơn hoặc bằng 0 => |2x + 6| + 1 lớn hơn hoặc bằng 1
Dâu "=" xảy ra khi 2x + 6 = 0 => x = (0 - 6) : 2 = -3
Vậy min A = -1 khi x = -3
l2x+6l >= 0 => l2x+ 6 l + 1 >= 1 với mọi x
=> -1/ l2x+6l + 1 >= -1/1 = - 1
VẬy GTNN của A là -1 khi 2x + 6 = 0 => x = - 3