Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2 - 2xy + 3y2 - 2x + 1997
= ( x2 - 2xy + y2 - 2x + 2y + 1 ) + ( 2y2 - 2y + 1/2 ) + 3991/2
= [ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] + 2( y2 - y + 1/4 ) + 3991/2
= [ ( x - y )2 - 2( x - y ) + 12 ] + 2( y - 1/2 )2 + 3991/2
= ( x - y - 1 )2 + 2( y - 1/2 )2 + 3991/2 ≥ 3991/2 ∀ x, y
Dấu "=" xảy ra <=> x = 3/2 ; y = 1/2
=> MinA = 3991/2 <=> x = 3/2 ; y = 1/2
\(x^2-2xy+3y^2-2x-10y+20\)
\(=\left(x^2+y^2+1-2xy-2x+2y\right)+2\left(y^2-6y+9\right)+1\)
\(=\left(x-y-1\right)^2+2\left(y-3\right)^2+1\ge1\)
Vậy GTNN của biểu thức là 1 khi x = 4; y = 3
2) \(P=\frac{4}{2x^2+2xy+y^2+5x+20}=\frac{4}{\left(x^2+2xy+y^2\right)+\left(x^2+5x+\frac{25}{4}\right)+\frac{75}{4}}\)
\(=\frac{4}{\left(x+y\right)^2+\left(x+\frac{5}{2}\right)^2+\frac{75}{4}}\)
Để P đạt GTLN
=> Mẫu thức đạt GTNN
mà \(\left(x+y\right)^2+\left(x+\frac{5}{2}\right)^2+\frac{75}{4}\ge\frac{75}{4}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\x+\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=\frac{5}{2}\end{cases}}\)
Thay x = -5/2 và y = 5/2 vào P
Khi đó P = \(\frac{4}{\left(-\frac{5}{2}+\frac{5}{2}\right)^2+\left(-\frac{5}{2}+\frac{5}{2}\right)^2+\frac{75}{4}}=\frac{4}{\frac{75}{4}}=\frac{16}{75}\)
Vậy Max P = 16/75 <=> x = -5/2 ; y = 5/2
1) Ta có P = x2 + 2xy + 3y2 + 5y + 10
= (x2 + 2xy + y2) + (2y2 + 5y + 10)
= \(\left(x+y\right)^2+2\left(y^2+\frac{5}{2}y+5\right)=\left(x+y\right)^2+2\left(y^2+\frac{5}{2}y+\frac{25}{16}+\frac{55}{16}\right)\)
= \(\left(x+y\right)^2+2\left(y+\frac{5}{4}\right)^2+\frac{55}{8}\ge\frac{55}{8}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\y+\frac{5}{4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{4}\\y=-\frac{5}{4}\end{cases}}\)
Vạy Min P = 55/8 <=> x = 5/4 ; y = -5/4
a/ A = 2x2 + y2 - 2xy - 2x + 3
= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2
= (x - y)2 + (x - 1)2 + 2\(\ge2\)
Lời giải:
\(A=x^2-2xy+3y^2-2x+2018,5\)
\(=(x^2-2xy+y^2)+2y^2-2x+2018,5\)
\(=(x-y)^2-2(x-y)+1+2y^2-2y+2017,5\)
\(=(x-y-1)^2+2(y^2-y+\frac{1}{4})+2017\)
\(=(x-y-1)^2+2(y-\frac{1}{2})^2+2017\)
\(\geq 0+2.0+2017=2017\)
Vậy GTNN của biểu thức là $2017$ tại \(\left\{\begin{matrix} x-y-1=0\\ y-\frac{1}{2}=0\end{matrix}\right.\Leftrightarrow x=\frac{3}{2}; y=\frac{1}{2}\)
a) \(2x^2+y^2+4x-2y-2xy+10\)
\(=x^2+x^2+y^2+4x-2y-2xy+4+6\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)-2\left(y-3\right)\)
\(=\left(x-y\right)^2+\left(x+2\right)^2-2\left(y-3\right)\)
.......................chắc không phải cách làm này đâu!
b) \(5x^2+y^2+2xy-4x\)
\(=x^2+4x^2+y^2+2xy-4x\)
\(=\left(x^2+2xy+y^2\right)+x^2-4x\)
\(\left(x+y\right)^2+x^2-4x\)
a, \(2x^2\)+\(y^2\)+\(4x-2y-2xy+10\)\(=y^2\)\(-x^2\)\(-1+2x-2y-2xy+3x^2+2x+11\)\(=\left(y-x-1^{ }\right)^2\)\(+3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\frac{32}{3}\)\(=\left(y-x-1\right)^2+3\left(x+\frac{1}{3}\right)^2+\frac{32}{3}\)\(\ge\frac{32}{3}\)
VẬY GTNN CỦA BIỂU THỨC \(=\frac{32}{3}\)KHI \(y-x-1=0;x+\frac{1}{3}=0\Rightarrow x=\frac{-1}{3};y=\frac{2}{3}\)
a) A= -x2 + 6x -10
= -(x2 - 6x) -10
= -(x2 - 2. x .3 +32 -9)- 10
= -( x-3 )2 +9 -10
= - (x-3)2 -1 \(\le\)-1 với mọi giá trị của x
Dấu '' = '' xảy ra khi và chỉ khi
x-3 =0
\(\Leftrightarrow\)x=3
Vậy giá trị lớn nhất của biểu thức A là -1 tại x =3
CÁC PHẦN KHÁC CẬU LÀM TƯƠNG TỰ
b) B= -2x2-4x-10
= -2(x2+ 2x ) -10
= -2 (x2 +2x+12 -1)-10
=-2(x+1)2 +2 -10
=-2(x+1)2 -8 \(\le\)-8 với mọi giá trị của x
Dấu " ='' xảy ra khi và chỉ khi
x+1=0
............................
c) C= -2x2 +3x -10
= -2(x2 -\(\frac{3}{2}\)x) -10
= -2( x2 - 2.x.\(\frac{3}{4}\)+ \(\frac{3^2}{4^2}\)-\(\frac{9}{16}\))-10
= -2(x-\(\frac{3}{4}\))2 +\(\frac{9}{8}\)-10
=-2(x- \(\frac{3}{4}\))2 +\(\frac{-71}{8}\)\(\le\)\(\frac{-71}{8}\)với mọi giá trị của x
Dấu bằng ''='' xảy ra khi và chi khi
x-\(\frac{3}{4}\)=0
.......................................................
d) D= -x2 -y2+2x-4y -10
=(-x2+2x) +( -y2 -4y) -10
= -(x2 -2x+1 -1) -(y2 +4y+22-4 )-10
=-(x-1)2 +1 -(y+2)2 +4 -10
=-(x-1)2 - (y+2)2 -5 \(\le\)5 với mọi giá tri của x
Dấu '' ='' xảy ra khi và chỉ khi
\(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\)
......................................................
e) XIN LỖI TỚ CHƯA NGHĨ RA
\(B=x^2-2xy+3y^2-2x-10y+20\)
\(=x^2-2xy+y^2-2\left(x-y\right)+1+2y^2-12y+19\)
\(=\left(x-y\right)^2-2\left(x-y\right)+1+2\left(y^2-6y+9\right)+1\)
\(=\left(x-y-1\right)^2+2\left(y-3\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-y-1=0\\y-3=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=4\\y=3\end{cases}}\)
Vậy Min \(B=1\)khi \(x=4;\)\(y=3\)