Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)\ge\frac{1}{2}.2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}=x^4y^4\)
\(x^{16}+y^{16}+1+1+1+1+1+1\ge8\sqrt[8]{x^{16}y^{16}}=8x^2y^2\)
\(\Rightarrow A\ge x^4y^4+\frac{1}{4}\left(8x^2y^2-6\right)-\left(x^4y^4+2x^2y^2+1\right)=-\frac{5}{2}\)
Dấu "=" xảy ra khi \(x^2=y^2=1\)
Vậy GTNN của A là -5/2.
1. Áp dụng Min - cốp - ski, ta được: \(\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\frac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\frac{9}{\left(c+a\right)^2}+b^2}\)\(\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{c+a}\right)^2+\left(a+b+c\right)^2}\)\(\ge\sqrt{\left(\frac{27}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\)(Bunyakovsky dạng phân thức)
Đặt \(t=a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)thì ta cần chứng minh: \(\sqrt{\frac{729}{4t^2}+t^2}\ge\frac{3\sqrt{13}}{2}\Leftrightarrow\frac{729}{4t^2}+t^2\ge\frac{117}{4}\)\(\Leftrightarrow\frac{\left(t+3\right)\left(t-3\right)\left(2t+9\right)\left(2t-9\right)}{4t^2}\ge0\)*đúng bởi \(t-3\le0;t+3>0;2t+9>0;2t-9< 0;4t^2>0\)*
Đẳng thức xảy ra khi t = 3 hay a = b = c = 1
2. Ta có: \(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}-3=\frac{\left(x^2-y^2\right)^2\left(x^4+y^4+x^2y^2\right)}{x^2y^2\left(x^2+y^2\right)^2}\ge0\)\(\Rightarrow\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)
Đẳng thức xảy ra khi x = y
e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)
Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)
Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new
e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ
thanks nhiều!
Ap dung \(a^2+b^2+c^2\ge ab+bc+ac\)
\(A\ge\frac{2xy}{x^2+y^2}.\frac{x}{y}+\frac{2xy}{x^2+y^2}.\frac{y}{x}+\frac{x}{y}.\frac{y}{x}\)
\(\ge\frac{2x^2}{x^2+y^2}+\frac{2y^2}{x^2+y^2}+1\ge2+1=3\)
Dau "=" xay ra \(\Leftrightarrow x=\pm y\)
A\(=\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\)
\(=\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^4+y^4}{x^2y^2}\ge\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{\frac{\left(x^2+y^2\right)^2}{2}}{x^2y^2}\)
\(=\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{\left(x^2+y^2\right)^2}{4x^2y^2}+\frac{\left(x^2+y^2\right)^2}{4x^2y^2}\ge2+\frac{\left(2xy\right)^2}{4x^2y^2}=3\) ( cô si)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^2=y^2\\\frac{4x^2y^2}{\left(x^2+y^2\right)^2}=\frac{\left(x^2+y^2\right)^2}{4x^2y^2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=y^2\\16x^2y^2=\left(x^2+y^2\right)^4\end{cases}}\)<=> x = y hoặc x = -y
Vậy minA = 3 tại x = y hoặc x = -y
\(a+b+c=1\)
\(P=\frac{a}{b^2+c^2}+\frac{b}{a^2+c^2}+\frac{c}{a^2+b^2}\)
Link
bạn tham khảo link đó nhé
\(A=\left(\frac{2xy}{x^2+y^2}\right)^2+\frac{x^4+y^4+2\left(xy\right)^2}{\left(xy\right)^2}-2=4\left(\frac{xy}{x^2+y^2}\right)^2+\left(\frac{x^2+y^2}{xy}\right)^2-2\)
\(=\left(\frac{2xy}{x^2+y^2}\right)^2+\left(\frac{x^2+y^2}{2xy}\right)^2+3\left(\frac{x^2+y^2}{2xy}\right)^2-2\)
\(\ge2\sqrt{\left(\frac{2xy}{x^2+y^2}\right)^2.\left(\frac{x^2+y^2}{2xy}\right)^2}+3\left(\frac{2xy}{2xy}\right)^2-2=3\)