K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

Vì (2x+1)^2 \(\ge\) 0, (3x-2y)^2 \(\ge\) 0 \(\Rightarrow\) (2x+1)^2 + (3x-2y) + 2005  \(\ge\)  2005

Vậy A có GTNN là 2005

19 tháng 2 2017

\(A=x^2-3x+1\)

\(=x^2-2x\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+1\)

\(=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}+\frac{4}{4}\)

\(=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\) \(\forall\) \(x\) \(\Rightarrow\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\) \(\forall\) \(x\)

Vậy GTNN của A là \(-\frac{5}{4}\) tại \(x=\frac{3}{2}\)

19 tháng 12 2017

GTNN?

22 tháng 5 2018

giá trị nhỏ nhất đó bn

26 tháng 11 2016

Lam giup minh voi

19 tháng 10 2017

a) \(F=2\left|3x-2\right|-1\)

\(\left|3x-2\right|\ge0\forall x\Rightarrow2\left|3x-2\right|\ge0\)

\(\Rightarrow2\left|3x-2\right|-1\ge-1\)

''='' xảy ra khi \(3x-2=0\Rightarrow x=\dfrac{2}{3}\)

=> \(F_{min}=-1\)

b) \(G=x^2+3\left|y-2\right|-1\)

Ta có: \(\left\{{}\begin{matrix}x^2\ge0\forall x\\3\left|y-2\right|\ge0\forall y\end{matrix}\right.\)

=> \(x^2+3\left|y-2\right|\ge0\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)

''='' xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy \(G_{min}=-1\)

19 tháng 10 2017

\(A=2\left|3x-2\right|-1\ge-1\)

Dấu "=" xảy ra khi : \(x=\dfrac{2}{3}\)

\(B=x^2+3\left|y-2\right|-1\ge-1\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

9 tháng 2 2017

Có: \(A=\sqrt{\left(2x+1\right)^2+4}+3.I3y^2I+5\ge\sqrt{4}+3.0+5=7\)

dấu bằng xảy ra khi: \(\hept{\begin{cases}\left(2x+1\right)^2\\y=0\end{cases}=0}\)\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=0\end{cases}}\)

10 tháng 2 2017

Vì \(\left(2x+1\right)^2\ge0\)

\(\Rightarrow\left(2x+1\right)^2+4\ge4\)

\(\Rightarrow\sqrt{\left(2x+1\right)^2+4}\ge\sqrt{4}=2\)

\(3\left|3y^2\right|+5\ge5\)

Cộng vế với vế ta được :\(A=\sqrt{\left(2x+1\right)^2+4}+3\left|3y^2\right|+5\ge2+5=7\) có gtnn là 7

Dấu "=" xảy ra <=> \(\orbr{\begin{cases}\left(2x+1\right)^2=0\\\left|3y^2\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\y=4\end{cases}}}\)

Vậy gtnn của A là 7 <=> x = - 1/2 ; y = 0

18 tháng 6 2018

2xy.(3x^2y-4xy^2)-1/2x^2y^2.(12x-16y)+xy.(3-13xy)+13.(x^2y^2-1)