K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

A=|2x-2|+|2x-2013| có giá trị nhỏ nhất => 2x-2= 0 hoặc 2x-2013=0

Mà x là 1 số nguyên => 2x-2= 0 => x=1

18 tháng 7 2015

 

A=|2x-2|+|2x-2013|

=|2x-2|+|2013-2x|\(\ge\)|2x-2+2013-2x|=2011

Dấu "=" xãy ra khi:

(2x-2)(2013-2x)\(\ge\)0

TH1: 2x-1\(\ge\)0 và 2013-2x\(\ge\)0

x\(\ge\)1/2 và x\(\ge\)2013/2

=>x\(\ge\)2013/2

TH2: 2x-1\(\le\)0 và 2013-2x\(\le\)0

x\(\le\)1/2 và x\(\le\)2013/2

=>x\(\le\)1/2

từ 2 TH suy ra không có giá trị nào của x thỏa mãn A nhỏ nhất

 

4 tháng 10 2019

\(A=|2x-2|+|2x-2013|\)

\(=|2x-2|+|2013-2x|\ge|2x-2+2013-2x|\)

\(\Rightarrow A\ge2011\)

Dấu "="xảy ra \(\Leftrightarrow\left(2x-2\right)\left(2013-2x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}2x-2\ge0\\2013-2x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}2x-2< 0\\2013-2x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2013}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x>\frac{2013}{2}\end{cases}}\)( loại )

\(\Leftrightarrow1\le x\le\frac{2013}{2}\)mà \(x\in Z\)

\(\Rightarrow x\in\left\{1;2;...;1006\right\}\)

Vậy \(A_{min}=2011\)\(\Leftrightarrow x\in\left\{1;2;...;1006\right\}\)

4 tháng 10 2019

giúp mình với các bạn ơi

mình sắp phải nộp rồi

29 tháng 3 2021

A = | 2x - 2 | + | 2x - 2013 |

= | 2x - 2 | + | 2013 - 2x |

≥ | 2x - 2 + 2013 - 2x | = | 2011 | = 2011

Đẳng thức xảy ra <=> ( 2x - 2 )( 2013 - 2x ) ≥ 0 => 1 ≤ x ≤ 2013/2

Vậy ...

21 tháng 12 2016

\(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\)

Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) , ta có:

\(A\ge\left|2x-2+2013-2x\right|=2011\)

Vậy GTNN của A là 2011 khi \(\begin{cases}2x-2\ge0\\2013-2x\ge0\end{cases}\)\(\Leftrightarrow1\le x\le\frac{2013}{2}\)

21 tháng 12 2016

trả lời giúp mình với hôm nay mình thi rồi

27 tháng 5 2018

vào phần câu hỏi tương tự là có đáp án nhek bn

27 tháng 5 2018

Ta có \(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\)

Ta thấy \(A=\left|2x-2\right|+\left|2013-x\right|\ge\left|2x-2+2013-2x\right|=2011\) ra

Dấu " = " xảy ra khi và chỉ khi \(\left(2x-2\right).\left(2013-2x\right)\ge0\)

\(\Leftrightarrow\frac{2013}{2}\ge x\ge1\)

Vậy .....

21 tháng 4 2016

A=|2x-2|+|2x-2013|=|2x-2|+|2013-x|

Áp dụng BĐT:|a|+|b|>=|a+b|

Ta có:|2x-2|+|2013-x|>=|2x-2+2013-2x|=2011

Dấu "=" xảy ra<=>(2x-2)(2013-2x)>=0<=>1<=x<=2013/2

\(A=\left|2x-2\right|+\left|2x-2003\right|\)

\(=\left|2x-2\right|+\left|2003-2x\right|\)

=>\(A>=\left|2x-2+2003-2x\right|=2001\)

Dấu '=' xảy ra khi (2x-2)(2x-2003)<=0

TH1: \(\left\{{}\begin{matrix}2x-2>=0\\2x-2003< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=1\\x< =\dfrac{2003}{2}\end{matrix}\right.\)

=>\(1< =x< =\dfrac{2003}{2}\)

TH2: \(\left\{{}\begin{matrix}2x-2< =0\\2x-2003>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x>=2003\\2x< =2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{2003}{2}\\x< =1\end{matrix}\right.\Leftrightarrow Loại\)

Vậy: \(A_{min}=2001\) khi 1<=x<=2003/2

Ta có : A = |2x+2|+|2x-2013|

           A = |2x+2|+|2013-2x| \(\ge\)2x+2+2013-2x=2015

    Dấu ''='' xảy ra khi \(\hept{\begin{cases}2x+2\ge0\\2013-2x\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2x\ge2\\2x\le2013\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le1006\end{cases}}\)\(\left(x\in Z\right)\)\(\Leftrightarrow1\le x\le1006\)

Vậy để A = |2x+2|+|2x-2013| đạt GTNN là 2015 thì \(1\le x\le1006\)

Hok tốt

ta có

A = |2x + 2| + |2x - 2013|

 |2x + 2| \(\ge\) \(2x+2\)\(\forall\)  \(x\in Z\)

  |2x - 2013|  \(\ge\) \(2013-2x\)   \(\forall\) \(x\in Z\)

\(\Rightarrow\text{​​}\) A = |2x + 2| + |2x - 2013|  \(\ge\)\(2x+2\)  +   \(2013-2x\)  \(=\)       \(2015\)         \(\forall\)\(x\in Z\)

dấu bằng xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}2x+2\ge0\\2013-2x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}2x\ge-2\\x\le1006\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le1006\end{cases}}}\)

vậy min A=2015  \(\Leftrightarrow\)  \(-1\le x\le1006\)