Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2}A=\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\)
\(\sqrt{2}A=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\)
Áp dụng BĐT \(\sqrt{A^2+B^2}+\sqrt{C^2+D^2}\ge\sqrt{\left(A+C\right)^2+\left(B+D\right)^2}\)
=>\(\sqrt{2}A\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\)
=>\(A\ge\sqrt{13}\)
Dấu bằng xảy ra<=> \(\frac{2x-1}{3}=\frac{2x-2}{2}\)
<=>.........
\(Q=\sqrt{x^2-4x+4}+\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(2-x\right)^2}\)
\(\Leftrightarrow\left|x+2\right|+\left|2-x\right|\ge\left|x+2+2-x\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+2\right)\left(2-x\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2\ge0\\2-x\ge0\end{cases}}\) hoặc \(\orbr{\begin{cases}x+2\le0\\2-x\le0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge-2\\x\le2\end{cases}}\) hoặc \(\orbr{\begin{cases}x\le-2\\x\ge2\end{cases}}\left(vo-ly\right)\)
Vậy minQ = 4 \(\Leftrightarrow-2\le x\le2\)
Bài 1 :
ĐKXĐ : \(x\ge2\)
\(2x+5=6\sqrt{2x-4}\)
\(\Leftrightarrow4x^2+20x+25=36\left(2x-4\right)\)
\(\Leftrightarrow4x^2+20x+25-72x+144=0\)
\(\Leftrightarrow4x^2-52x+159=0\)
Đến đây chịu :))
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt
a) \(A=\sqrt{x^2+2x+5}=\sqrt{\left(x+1\right)^2+4}\ge\sqrt{4}=2\forall x\in R.\)
GTNN của A = 2 khi x = -1.
b) \(B=\sqrt{x^2+2x+5}+\sqrt{2x^2+4x+3}=\sqrt{\left(x+1\right)^2+4}+\sqrt{2\left(x+1\right)^2+1}\ge\sqrt{4}+1=3\)
GTNN của B = 3 khi x = -1.
\(A=\sqrt{2x^2-4x+3}+3\)
Ta có: \(2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)
\(=2[\left(x-1\right)^2+\frac{1}{2}]\)
\(=2\left(x-1\right)^2+1\ge1\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)
\(\Rightarrow MinA=4\Leftrightarrow x=1\)
\(A=\sqrt{2x^2-4x+5}+1\)
\(=\sqrt{2\left(x^2-2x+1\right)+3}+1\)
\(=\sqrt{2\left(x-1\right)^2+3}+1\)
=> \(A_{min}=\sqrt{3}+1\) khi và chỉ khi \(\left(x-1\right)^2=0\)hay \(x=1\)