K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

\(A=2x^2+4y^2+4xy+2x+4y+9\)

\(=2\left(x^2+x\left(2y+1\right)+\dfrac{\left(2y+1\right)^2}{4}\right)-\dfrac{\left(2y+1\right)^2}{2}+4y^2+4y+9\)

\(=2\left(x+\dfrac{2y+1}{2}\right)^2-2y^2-2y-\dfrac{1}{2}+4y^2+4y+9\)

\(=2\left(x+\dfrac{2y+1}{2}\right)^2+2y^2+2y+\dfrac{17}{2}\)

\(=2\left(x+\dfrac{2y+1}{2}\right)^2+2\left(y+\dfrac{1}{2}\right)^2+8\ge8\)

Dấu '' = '' xảy ra khi: \(\Leftrightarrow\left\{{}\begin{matrix}y+\dfrac{1}{2}=0\\x+\dfrac{2y+1}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{2}\\x=0\end{matrix}\right.\)

Vậy: Min A = 8 khi \(x=0;y=-\dfrac{1}{2}\)

16 tháng 6 2018

yiouoiyy

16 tháng 6 2018

\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)\(\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=-3\\z=8\end{cases}}}\)

6 tháng 8 2016

d)  D = x4 - 6x2 + 10

D = (X2)2 - 2. x2. 3 + 32 + 1

D = (x2 - 3)2 + 1

(x2 - 3) >= 0 với mọi x

(x2 - 3)+ 1 >=1 với moi5 x

Vậy GTNN của D là 1

4 tháng 9 2016

1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4

GTNN = 5

2) tuong tu 

16 tháng 9 2018

a, \(P=2x^2+5y^2+4xy+8x-4y+15\)

\(=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-5\)\(\ge-5\)

Dấu "="xảy ra khi:\(\hept{\begin{cases}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=2\end{cases}}\)

Vậy...

b, \(C=2x^2+4xy+4y^2-3x-1\)

\(=\left(x+2y\right)^2+\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

sau đó giải tương tự câu a nhé

7 tháng 10 2017

P = 2xx+4y2+4xy+2x+4y+9

   = x2+(x2+4y2+1+4xy+2x+4y) +8

   = x2+(x+2y+1)2+8 \(\ge\)8

dấu bằng xảy ra khi x=0 y=-0.5

25 tháng 12 2018

\(A=2x^2+4y^2+4xy-2x+4y+2022\)

\(A=x^2+x^2+4y^2+4xy-2x+4y+2022\)

\(A=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+x^2-4x+4+2018\)

\(A=\left(x+2y\right)^2+2\left(x+2y\right)+1+\left(x-2\right)^2+2017\)

\(A=\left(x+2y+1\right)^2+\left(x-2\right)^2+2017\)

Đến đây tự làm đc rồi :))

30 tháng 10 2017

2x2+4y2+4xy+2x+4y+9

=x2 +4y2+4xy+1+2x+4y+x2+9

=(x+2y)2+2(x+2y)+1+x2+9

=(x+2y+1)2+x2+9

có (x+2y+1)2≥0 với mọi x,y

x2≥0 với mọi x

⇒(x+2y+1)2+x2 ≥0với mọi x,y

⇒(x+2y+1)2+x2+9≥9với mọi x,y

30 tháng 10 2017

ta có :

A = 2x2+4y2+4xy+2x+4y+9 = 2x2+2x+4y2+4y+4xy+9

= 2x(x+1)+4y(y+1)+4xy+9

= 2x(x+1)+4y(y+x+1)+9

= (x+1)(2x+4y2)+9

=> A lớn hơn hoặc bằng 9

=> min A là 9